In the quest for thinner and more efficient ferroelectric devices, HfZrO (HZO) has emerged as a potential ultrathin and lead-free ferroelectric material. Indeed, when deposited on a TiN electrode, 1-25 nm thick HZO exhibits excellent ferroelectricity capability, allowing the prospective miniaturization of capacitors and transistor devices. To investigate the origin of ferroelectricity in HZO thin films, we conducted a far-infrared (FIR) spectroscopic study on 5 HZO films with thicknesses ranging from 10 to 52 nm, both within and out of the ferroelectric thickness range where ferroelectric properties are observed.
View Article and Find Full Text PDFTwo-dimensional (2D) honeycomb lattices beyond graphene, such as germanene, appear very promising due to their outstanding electronic properties, such as the quantum spin Hall effects. While there have been many claims of germanene monolayers up to now, no experimental evidence of a honeycomb structure has been provided up to now for these grown monolayers. Using scanning tunneling microscopy (STM), surface X-ray diffraction (SXRD), and density functional theory, we have elucidated the Ge-induced reconstruction on Ag(111).
View Article and Find Full Text PDFSteel is the most commonly manufactured material in the world. Its performances can be improved by hot-dip coating with the low weight aluminum metal. The structure of the Al∥Fe interface, which is known to contain a buffer layer made of complex intermetallic compounds such as AlFe and AlFe, is crucial for the properties.
View Article and Find Full Text PDFOhmic or Schottky contacts in micro- and nanoelectronic devices are formed by metal-semiconductor bilayer systems, based on elemental metals or thermally more stable metallic compounds (germanides, silicides). The control of their electronic properties remains challenging as their structure formation is not yet fully understood. We have studied the phase and microstructure evolution during sputter deposition and postgrowth annealing of Pd/a-Ge bilayer systems with different Pd/Ge ratios (Pd:Ge, 2Pd:Ge, and 4Pd:Ge).
View Article and Find Full Text PDFNew collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
A few low-order approximants to decagonal quasicrystals have been shown to provide excellent activity and selectivity for the hydrogenation of alkenes and alkynes. It is the case for the AlCo compound, for which the catalytic properties of the pseudo-2-fold orientation have been revealed to be among the best. A combination of surface science studies, including surface X-ray diffraction, and calculations based on density functional theory is used here to derive an atomistic model for the pseudo-2-fold -AlCo surface, whose faceted and columnar structure is found very similar to the one of the 2-fold surface of the -Al-Ni-Co quasicrystal.
View Article and Find Full Text PDFWe explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion.
View Article and Find Full Text PDFSynchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous PdSi interlayer is formed. At a critical thickness of 2.
View Article and Find Full Text PDFMultiferroic biphase systems with robust ferromagnetic and ferroelectric response at room temperature would be ideally suitable for voltage-controlled nonvolatile memories. Understanding the role of strain and charges at interfaces is central for an accurate control of the ferroelectricity as well as of the ferromagnetism. In this paper, we probe the relationship between the strain and the ferromagnetic/ferroelectric properties in the layered CoFeO/BaTiO (CFO/BTO) model system.
View Article and Find Full Text PDFProducing a usable semiconducting form of graphene has plagued the development of graphene electronics for nearly two decades. Now that new preparation methods have become available, graphene's intrinsic properties can be measured and the search for semiconducting graphene has begun to produce results. This is the case of the first graphene "buffer" layer grown on SiC(0001) presented in this work.
View Article and Find Full Text PDFWe investigated composite films of gold nanoparticles (NPs)/liquid crystal (LC) defects as a model system to understand the key parameters, which allow for an accurate control of NP anisotropic self-assemblies using soft templates. We combined spectrophotometry, Raman spectroscopy, and grazing incidence small-angle X-ray scattering with calculations of dipole coupling models and soft sphere interactions. We demonstrate that dense arrays of elementary edge dislocations can strongly localize small NPs along the defect cores, resulting in formation of parallel chains of NPs.
View Article and Find Full Text PDFThe correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity.
View Article and Find Full Text PDFSelf-assembled vertical epitaxial nanostructures form a new class of heterostructured materials that has emerged in recent years. Interestingly, such kind of architectures can be grown using combinatorial processes, implying sequential deposition of distinct materials. Although opening many perspectives, this combinatorial nature has not been fully exploited yet.
View Article and Find Full Text PDFFrom an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.
View Article and Find Full Text PDF