Publications by authors named "Alina Santiago"

The aim of this study is to examine the precision of semi-automatic, conventional and automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The phantom is a life-size anatomical chest model with pulmonary nodules representing solid and subsolid metastases. Gross tumor volumes (GTVs) were contoured using various approaches: manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush function; (II) flood-fill function; and (III) image-thresholding function.

View Article and Find Full Text PDF

Irradiation with electrons is the primary treatment regime for localized conjunctival low-grade lymphomas. However, radiation-induced cataracts are a major cause of treatment-related morbidity. This study investigates whether lens-sparing electron irradiation produces sufficient disease control rates while preventing cataract formation.

View Article and Find Full Text PDF

Purpose: This study aimed to assess interfraction stability of the delivered dose distribution by exhale-gated volumetric modulated arc therapy (VMAT) or intensity-modulated arc therapy (IMAT) for lung cancer and to determine dominant prognostic dosimetric and geometric factors.

Methods: Clinical target volume (CTV) from the planning CT was deformed to the exhale-gated daily CBCT scans to determine CTV, treated by the respective dose fraction. The equivalent uniform dose of the CTV was determined by the power law (EUD) and cell survival model (EUD) as effectiveness measure for the delivered dose distribution.

View Article and Find Full Text PDF

A ripple filter (RiFi) is a passive energy modulator used in scanned particle therapy to broaden the Bragg peak, thus lowering the number of accelerator energies required for homogeneous target coverage, which significantly reduces the irradiation time. As we have previously shown, a new 6 mm thick RiFi with 2D groove shapes produced with 3D printing can be used in carbon ion treatments with a similar target coverage and only a marginally worse planning conformity compared to treatments with in-use 3 mm thick RiFis of an older 1D design. Where RiFis are normally not used with protons due to larger scattering and straggling effects, this new design would be beneficial in proton therapy too.

View Article and Find Full Text PDF

Purpose: To compare dose to organs at risk (OARs) and dose-escalation possibility for 24 stage I non-small cell lung cancer (NSCLC) patients in a ROCOCO (Radiation Oncology Collaborative Comparison) trial.

Methods: For each patient, 3 photon plans [Intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and CyberKnife], a double scattered proton (DSP) and an intensity-modulated carbon-ion (IMIT) therapy plan were created. Dose prescription was 60 Gy (equivalent) in 8 fractions.

View Article and Find Full Text PDF

A ripple filter (RiFi)-also called mini-ridge filter-is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm.

View Article and Find Full Text PDF

Aim: To study the dose-response of stage I non-small-cell lung cancer (NSCLC) in terms of long-term local tumor control (LC) after conventional and hypofractionated photon radiotherapy, modeled with the linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) approaches and to estimate the clinical α/β ratio within the LQ frame.

Material And Methods: We identified studies of curative radiotherapy as single treatment through MedLine search reporting 3-year LC as primary outcome of interest. Logistic models coupled with the biologically effective dose (BED) at isocenter and PTV edge according to both the LQ and LQ-L models with α/β = 10 Gy were fitted.

View Article and Find Full Text PDF

Background: Particle dose distributions are highly sensitive to anatomy changes in the beam path, which may lead to substantial dosimetric deviations. Robust planning and dedicated image guidance together with strategies for online decision making to counteract dosimetric deterioration are thus mandatory. We aimed to develop methods to quantify anatomical discrepancies as depicted by repeated computed tomography (CT) imaging and to test whether they can predict deviations in target coverage.

View Article and Find Full Text PDF

Purpose: To investigate scanned-beam proton dose distribution reproducibility in the lung under high frequency jet ventilation (HFJV).

Materials And Methods: For 11 patients (12 lesions), treated with single-fraction photon stereotactic radiosurgery under HFJV, scanned-beam proton plans were prepared with the TRiP98 treatment planning system using 2, 3-4 and 5-7 beams. The planning objective was to deliver at least 95% of the prescription of 33 Gy (RBE) to 98% of the PTV.

View Article and Find Full Text PDF

Introduction: Image-guided advanced photon and particle beam treatments are promising options for improving lung treatments. Extensive use of imaging increases the overall patient dose. The aim of this study was to determine the imaging dose for different IGRT solutions used in photon and particle beam therapy.

View Article and Find Full Text PDF

Background And Purpose: Previous experiments have shown that application of the anti-EGFR monoclonal antibody C225 (cetuximab) improves local tumour control after irradiation in FaDu human squamous cell carcinoma (hSCC) due to the combined effect of decreased repopulation and improved reoxygenation. The present study investigates early changes of the pimonidazole hypoxic fraction of FaDu tumours and the expression and phosphorylation of the EGFR and its downstream signal transduction molecules after treatment with C225 alone or in combination with irradiation.

Material And Methods: FaDu tumour xenografts were irradiated with up to 3×3Gy with or without additional C225 treatment and excised at different time points.

View Article and Find Full Text PDF

Purpose: This study investigated the uptake of [(18)F]2-fluoro-2-deoxy-glucose ([(18)F]FDG) in the human tumour xenograft FaDu at early time points after single dose irradiation with Positron-Emission-Tomography (PET), autoradiography and functional histology.

Materials And Methods: [(18)F]FDG-PET of FaDu hSCC xenografts on nude mice was performed before 25 Gy or 35 Gy single dose irradiation and one, seven or 11 days post irradiation (p.irr.

View Article and Find Full Text PDF