Publications by authors named "Alina Ryabova"

Turquoise killifish (Nothobranchius furzeri) evolved a naturally short lifespan of about six months and exhibit aging hallmarks that affect multiple organs. These hallmarks include protein aggregation, telomere shortening, cellular senescence, and systemic inflammation. Turquoise killifish possess the full spectrum of vertebrate-specific innate and adaptive immune system.

View Article and Find Full Text PDF

Non-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments.

View Article and Find Full Text PDF

Genomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, , and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci.

View Article and Find Full Text PDF

Nuclear pollution is an urgent environmental issue and is a consequence of rapid industrialization and nuclear accidents in the past. Remediation of nuclear polluted sites using microbial vital activity (bioremediation) is a promising approach to recover contaminated areas in an environmentally friendly and cost-saving way. At the same time, the number of known bacterial and archaeal species able to withstand extremely high doses of ionizing radiation (IR) is steadily growing every year, together with growing knowledge about mechanisms of radioresistance that opens up opportunities for developing new biotechnological solutions.

View Article and Find Full Text PDF

Some organisms have evolved a survival strategy to withstand severe dehydration in an ametabolic state, called anhydrobiosis. The only known example of anhydrobiosis among insects is observed in larvae of the chironomid Recent studies have led to a better understanding of the molecular mechanisms underlying anhydrobiosis and the action of specific protective proteins. However, gene regulation alone cannot explain the rapid biochemical reactions and independent metabolic changes that are expected to sustain anhydrobiosis.

View Article and Find Full Text PDF

It is assumed that resistance to ionizing radiation, as well as cross-resistance to other abiotic stresses, is a side effect of the evolutionary-based adaptation of anhydrobiotic animals to dehydration stress. Larvae of Polypedilum vanderplanki can withstand prolonged desiccation as well as high doses of ionizing radiation exposure. For a further understanding of the mechanisms of cross-tolerance to both types of stress exposure, we profiled genome-wide mRNA expression patterns using microarray techniques on the chironomid larvae collected at different stages of desiccation and after exposure to two types of ionizing radiation-70 Gy of high-linear energy transfer (LET) ions (He) and the same dose of low-LET radiation (gamma rays).

View Article and Find Full Text PDF