Motivation: The number and size of computational models in biology have drastically increased over the past years and continue to grow. Modeled networks are becoming more complex, and reconstructing them from the beginning in an exchangeable and reproducible manner is challenging. Using precisely defined ontologies enables the encoding of field-specific knowledge and the association of disparate data types.
View Article and Find Full Text PDFCOVID-19 is one of the deadliest respiratory diseases, and its emergence caught the pharmaceutical industry off guard. While vaccines have been rapidly developed, treatment options for infected people remain scarce, and COVID-19 poses a substantial global threat. This study presents a novel workflow to predict robust druggable targets against emerging RNA viruses using metabolic networks and information of the viral structure and its genome sequence.
View Article and Find Full Text PDFPseudomonas aeruginosa is one of the leading causes of hospital-acquired infections. To decipher the metabolic mechanisms associated with virulence and antibiotic resistance, we have developed an updated genome-scale model (GEM) of P. aeruginosa.
View Article and Find Full Text PDFThe complex interplay of a pathogen with its virulence and fitness factors, the host's immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection.
View Article and Find Full Text PDFbelongs to the microbes of enormous biotechnological relevance. In particular, its strain ATCC 13032 is a widely used producer of L-amino acids at an industrial scale. Its apparent robustness also turns it into a favorable platform host for a wide range of further compounds, mainly because of emerging bio-based economies.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFMucins are present in mucosal membranes throughout the body and play a key role in the microbe clearance and infection prevention. Understanding the metabolic responses of pathogens to mucins will further enable the development of protective approaches against infections. We update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen, Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, extensive annotation addition, and literature-based curation to produce iPau21.
View Article and Find Full Text PDFStaphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant.
View Article and Find Full Text PDFThe current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy.
View Article and Find Full Text PDFis a quite recently discovered Gram-positive coccus. It has gained increasing attention due to its negative correlation with , which is one of the most successful modern pathogens causing severe infections with tremendous morbidity and mortality due to its multiple resistances. As the possible mechanisms behind its inhibition of remain unclear, a genome-scale metabolic model (GEM) is of enormous interest and high importance to better study its role in this fight.
View Article and Find Full Text PDFMotivation: The novel coronavirus (SARS-CoV-2) currently spreads worldwide, causing the disease COVID-19. The number of infections increases daily, without any approved antiviral therapy. The recently released viral nucleotide sequence enables the identification of therapeutic targets, e.
View Article and Find Full Text PDFTemporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points.
View Article and Find Full Text PDF