Wettability-tailored tracks are emerging as an efficient approach to collecting and transporting underwater air bubbles as well as water from the mist. However, tailoring the surface wettability by modifying the surface structural features via physiochemical methods to create superhydrophilic-superhydrophobic contrast tracks suffers from long-term durability issues, while the emerging liquid-infused slippery surface has inherent design engineering limitations and issues from infused oil depletion. Herein, we demonstrate that by selective silicone oil grafting onto the glass substrate, it is possible to create a wettability contrast of ∼ 43°.
View Article and Find Full Text PDFDroplet splitting by exploiting tailored surface wettability is emerging as an important pathway to creating ultralow volumes of samples that can have applications in bioassays, tissue engineering, protein chips, and material synthesis. Reduction of droplet volumes enables the encapsulation of single biological cells which allows high throughput screening. In this work, we demonstrate a facile fabrication approach to create a non-adhesive contrast quartz substrate that allows droplet splitting under gravitational force and its utilization to trap single biological cells for Raman spectroscopic studies.
View Article and Find Full Text PDF