Multi-responsive polymeric nanocontainers attract significant attention for their potential applications in biotechnology, drug delivery, catalysis, and other fields. By incorporating a liquid-crystalline (LC) mesogenic ligand with an alkyl tail length ranging from 8-12 carbons, ionically linked to the polymer backbone, we generate vesicles with walls significantly thinner than those of conventional polymersomes, approaching the thickness of a lipid bilayer. These LC vesicles, ranging in size from 50-120 nm, are designed to be mechanically robust due to the alignment of the hydrophilic polymer backbone within the plane of the vesicle wall.
View Article and Find Full Text PDFFluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH).
View Article and Find Full Text PDFThis work presents the synthesis and self-organization of the calamitic fluorinated mesogen, 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodobutoxy)ethanesulfonic acid, a potential model for perfluorosulfonic acid membranes (PFSA). The compound is derived in three steps from 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonyl fluoride, achieving a 78% overall yield. The resulting compound exhibits intricate thermal behavior.
View Article and Find Full Text PDF