Spin orbit torque driven switching is a favorable way to manipulate nanoscale magnetic objects for both memory and wireless communication devices. The critical current required to switch from one magnetic state to another depends on the geometry and the intrinsic properties of the materials used, which are difficult to control locally. Here, we demonstrate how focused helium ion beam irradiation can modulate the local magnetic anisotropy of a Co thin film at the microscopic scale.
View Article and Find Full Text PDFDue to its negligible spontaneous magnetization, high spin polarization and giant perpendicular magnetic anisotropy, MnRuGa (MRG) is an ideal candidate as an oscillating layer in THz spin-transfer-torque nano-oscillators. Here, the effect of ultrathin Al and Ta diffusion barriers between MRG and MgO in perpendicular magnetic tunnel junctions is investigated and compared to devices with a bare MRG/MgO interface. Both the compensation temperature, T, of the electrode and the tunneling magnetoresistance (TMR) of the device are highly sensitive to the choice and thickness of the insertion layer used.
View Article and Find Full Text PDF