In this paper, we present real-time profiles of temperature during a ferromagnetic nanoparticles (NPs)enhanced radiofrequency ablation (RFA). A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentration of 5 mg/mL) have been synthetized and injected within the tissue prior to perform the ablation, in order to facilitate the heat distribution to the peripheral sides of the ablated tissue. Temperature detection has been realized in situ with a network of 15 fiber Bragg grating (FBG) sensors in order to highlight the impact of the NPs on the RFA mechanism.
View Article and Find Full Text PDFDevelopment of porous carbons with high specific surface area (>1200mg) targeted at nitrate removal from aqueous solutions is investigated by chemical activation of carbonized rice husk. Potassium carbonate is used as activating and desilicating agent. The effect of post-synthetic treatment by gas phase ammoxidation with ozone/ammonia or oxidation with concentrated nitric acid followed by nitrification with urea on main physicochemical properties and on the effectiveness of the activated carbons in nitrate removal is compared with those determined for a pristine activated carbonized rice husk sample.
View Article and Find Full Text PDFThe purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis.
View Article and Find Full Text PDFThe extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites for chemical functionalization in the controlled formation of graphene architecture and composites. However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate its ability to undergo conformational changes due to responses to its environment, whether pH, salinity, or temperature. Here, we report experimental and molecular simulations confirming the conformational changes of single-layer graphene oxide sheets from the wet or dry state.
View Article and Find Full Text PDFSingle-layer graphene oxides (SLGOs) undergo morphological changes depending on the pH of the system and may account for restricted chemical reactivity. Herein, SLGO may also capture nanoparticles through layering and enveloping when the pH is changed, demonstrating potential usefulness in drug delivery or waste material capture.
View Article and Find Full Text PDF