Publications by authors named "Alina Khmelnitskaia"

To achieve the actuation of silicone-based foamed composites, a liquid-gas phase transition of the liquid captured in its pores is employed. The uncertainty of key parameters for a single or sequential open-air performance of such soft actuators limits their application. To define the main characteristics of the composites, in this work, two functions of the liquid there were separated: the pore-forming agent (FPA) and working liquid (WL).

View Article and Find Full Text PDF

This research deals with the synthesis of copoly(methylvinyl)(dimethyl)siloxanes by the copolycondensation of dimethyldiethoxy- and methylvinyldimethoxysilane in an active medium, followed by thermal condensation in a vacuum. We achieved a range of copolymers exhibiting finely tuned molecular weights spanning between 1500 and 20,000 with regulated functional methylvinylsiloxane units. Analysis of the microstructure showed that the copolymerization predominantly formed products demonstrating a random distribution of units (R~1).

View Article and Find Full Text PDF

A spring-roll actuator is a multilayer configuration of dielectric elastomer actuators that deforms in response to an electric field. To date, all spring-roll actuators are based on acrylate dielectric elastomers (DEs), and a few can reach deformations on a par with strains observed in natural muscles. Sensitivity to temperature and humidity, as well as the slow response times of acrylates, limit the commercialisation of these actuators.

View Article and Find Full Text PDF

This paper reports a method for the synthesis of 1,1,3,3,5,5-hexamethyl-7,7-diorganocyclotetrasiloxanes by the interaction of 1,5-disodiumoxyhexamethylsiloxane with dichlorodiorganosilanes such as methyl-, methylvinyl-, methylphenyl-, diphenyl- and diethyl dichlorosilanes. Depending on the reaction conditions, the preparative yield of the target cyclotetrasiloxanes is 55-75%. Along with mixed cyclotetrasiloxanes, the proposed method leads to the formation of polymers with regular alternation of diorganosylil and dimethylsylil units.

View Article and Find Full Text PDF