Indium tin oxide (ITO)-free solution-processed transparent electrodes are an essential component for the low-cost fabrication of organic optoelectronic devices. High-performance silver nanowires (AgNWs) ITO-free inverted organic photovoltaics (OPVs) usually require a AgNWs-embedded process. A simple cost-effective roll-to-roll production process of inverted ITO-free OPVs with AgNWs as a bottom transparent electrode requires solution-based thick metal oxides as carrier-selective contacts.
View Article and Find Full Text PDFResponsive materials with birefringent optical properties have been exploited for the manipulation of light in several modern electronic devices. While electrical fields are often utilized to achieve optical modulation, magnetic stimuli may offer an enticing complementary approach for controlling and manipulating light remotely. Here, the synthesis and characterization of magnetically responsive birefringent microparticles with unusual magneto-optical properties are reported.
View Article and Find Full Text PDFCompartmentalized microcapsules are useful for the release of multiple cargos in medicine, agriculture, and advanced responsive materials. Although several encapsulation strategies that involve more than one cargo have been proposed, dual- or multicompartment capsules with high cargo loadings and sufficient mechanical stability are rarely reported. Here, we propose a single-step emulsification route for the preparation of strong dual-compartment capsules that can host the main cargo in their core in combination with another liquid cargo stored within their thick shell.
View Article and Find Full Text PDFMicrocapsules are important for the protection, transport, and delivery of cargo in a variety of fields but are often too weak to withstand the high mechanical stresses that arise during the preparation and formulation of products. Although thick-shell strong capsules have been developed to circumvent this issue, the microfluidic or multistep methods utilized thus far limit the ease of fabrication and encapsulation throughput. Here, we exploit the phase separation of ternary liquid mixtures to achieve a high-throughput fabrication of strong bilayer microcapsules using a one-step bulk emulsification process.
View Article and Find Full Text PDFMicrocapsules for controlled chemical release and uptake are important in many industrial applications but are often difficult to produce with the desired combination of high mechanical strength and high shell permeability. Using water-oil-water double emulsions made in microfluidic devices as templates, we developed a processing route to obtain mechanically robust microcapsules exhibiting a porous shell structure with controlled permeability. The porous shell consists of a network of interconnected polymer particles that are formed upon phase separation within the oil phase of the double emulsion.
View Article and Find Full Text PDF