Publications by authors named "Alina Grigorescu"

Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages.

View Article and Find Full Text PDF

Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects.

View Article and Find Full Text PDF

The gammaproteobacterium Serratia symbiotica is one of the major secondary symbionts found in aphids. Here, we report the draft genome sequence of S. symbiotica strain CWBI-2.

View Article and Find Full Text PDF

Few endocytosed ligands, including bacterial toxins and simian virus 40 (SV40) have been shown to reach the endoplasmic reticulum (ER) in mammalian cells. Using calcein and fluorescently labelled lactoferrin encapsulated in fusogenic liposomes we found that the cargo uses a microtubule-based pathway with ER delivery. Endocytic uptake of the lipid vesicles was cholesterol dependent in all cell lines tested, including the caveolin-1-deficient human hepatoma 7 cell line.

View Article and Find Full Text PDF