Porous molecular nanocontainers of {Mo132 }-type Keplerates offer unique opportunities to study a wide variety of relevant phenomena. An impressive example is provided by the highly reactive {Mo132 -CO3 } capsule, the reaction of which with valeric acid results in the very easy release of carbon dioxide and the uptake of 24 valerate ions/ligands that are integrated as a densely packed aggregate, thus indicating the unique possibility of hydrophobic clustering inside the cavity. Two-dimensional NMR techniques were used to demonstrate the presence of the 24 valerates and the stability of the capsule up to ca.
View Article and Find Full Text PDFIn zeolites and other rigid solid-state oxides, substrates whose sizes exceed the pore dimensions of the material are rigorously excluded. Now, using a porous 3 nm diameter capsule-like oxomolybdate complex [{Mo(VI)(6)O(21)(H(2)O)(6)}(12){(Mo(V)(2)O(4))(30)(OAc)(21)(H(2)O)(18)}](33-) as a water-soluble analogue of solid-state oxides (e.g.
View Article and Find Full Text PDF