Publications by authors named "Alina Botea-Petcu"

The exposure of nanoparticles (NPs) to biological fluids leads to the formation of a protein coating that is known as protein corona (PC). Since PC formation is influenced by the physicochemical properties of the nanoparticles, the understanding of the interplay of the factors that participate in this process is crucial for the development of nanomaterials as cell-targeted delivery vehicles. In general, it is accepted that the PC formation is a complex and dynamic process, which depends on the composition of the medium and the properties of the NP mainly size, shape, and superficial charge.

View Article and Find Full Text PDF

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data.

View Article and Find Full Text PDF

Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO; NM-101), and silica (SiO; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry.

View Article and Find Full Text PDF