This paper presents a validated method using ultra-high pressure liquid chromatography with photodiode array detection coupled to high-resolution mass spectrometry (UHPLC-PDA-HRMS) for the simultaneous analysis of a wide range of natural and synthetic organic colourants, including neutral, acidic and basic dyes. In total, 30 natural and 62 synthetic organic dye reference samples (which contain 118 compounds because some of the dyes are composed of mixtures) were analysed. The method demonstrated good linearity for the 12 dyes selected for method validation achieving correlation coefficients (R) exceeding 0.
View Article and Find Full Text PDFDespite our growing awareness of micro-and nanoplastics presence in food and beverages, the fate of nanoplastics (NPs) in the human gastrointestinal tract (GIT) remains poorly investigated. Changes of nanoplastics size upon digestive conditions influence the potential of absorption through the intestine. In this study, polymer nanoparticles with different physicochemical properties (size, surface and chemistry) were submitted to gastrointestinal digestion (GID) simulated in vitro.
View Article and Find Full Text PDFWe report an online analytical platform based on the coupling of asymmetrical flow field-flow fractionation (AF4) and native mass spectrometry (nMS) in parallel with UV-absorbance, multi-angle light scattering (MALS), and differential-refractive-index (UV-MALS-dRI) detectors to elucidate labile higher-order structures (HOS) of protein biotherapeutics. The technical aspects of coupling AF4 with nMS and the UV-MALS-dRI multi-detection system are discussed. The "slot-outlet" technique was used to reduce sample dilution and split the AF4 effluent between the MS and UV-MALS-dRI detectors.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AF4) has attracted considerable attention as a size-based separation technique, due to its mild separation conditions, broad working range (from approximately 10 to 10 Da molecular mass or from 1 nm to 1 μm particle diameter), and versatility. AF4 is primarily being used to measure particle size, polydispersity, and physical stability of various systems, such as (bio)-macromolecules and nanoparticles. In comparison with size-exclusion chromatography (packed column), AF4 (open channel) allows separation while preserving labile structures.
View Article and Find Full Text PDFProtein dynamics play a significant role in many aspects of enzyme activity. Monitoring of structural changes and aggregation of biotechnological enzymes under native conditions is important to safeguard their properties and function. In this work, the potential of asymmetrical flow field-flow fractionation (AF4) to study the dynamic association equilibria of the enzyme β-D-galactosidase (β-D-Gal) was evaluated.
View Article and Find Full Text PDFWhen considering incident investigations and security checks focused on energetic materials, there is an ongoing need for rapid, on-scene chemical identification. Currently applied methods are not capable of meeting all requirements, and hence, portable mass spectrometry is an interesting alternative although many instrumental challenges still exist. To be able to analyze explosives with mass spectrometry outside the traditional laboratory, suitable ambient ionization methods need to be developed.
View Article and Find Full Text PDFSurface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner.
View Article and Find Full Text PDFIn this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions).
View Article and Find Full Text PDFFullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture.
View Article and Find Full Text PDFA prominent sector of nanotechnology is occupied by a class of carbon-based nanoparticles known as fullerenes. Fullerene particle size and shape impact in how easily these particles are transported into and throughout the environment and living tissues. Currently, there is a lack of adequate methodology for their size and shape characterisation, identification and quantitative detection in environmental and biological samples.
View Article and Find Full Text PDFIn this work, a method is proposed for the simultaneous analysis of several pristine fullerenes (C60, C70, C76, C78, and C84) and three C60-fullerene derivatives (N-methyl fulleropyrrolidine, [6,6]-phenyl C61 butyric acid methyl ester and [6,6]-phenyl C61 butyric acid butyl ester) in environmental samples. The method involves the use of ultrahigh performance liquid chromatography coupled to atmospheric pressure photoionization mass spectrometry (UHPLC-APPI-MS) and allowed the chromatographic separation in less than 4.5min.
View Article and Find Full Text PDF