This work demonstrates the first time synthesis of selenium nanoparticles (Se NPs) stabilized with neonol. The synthesis method was optimized using a multifactorial experiment with three input parameters. The most stable sample had a radius of 15 nm and a ζ-potential of -36.
View Article and Find Full Text PDFSynthesis, characterization and assessment of therapeutic efficacy of chitosan-ricobendazole complex were carried out for the first time in this work. Study of physico-chemical properties revealed the optimal ratio of chitosan: ricobendazole (30:4). Quantum chemical modeling set the optimal parameters for the formation of the chitosan-ricobendazole molecular system (E = -3765.
View Article and Find Full Text PDFThis study discovered and examined novel triple chelate complexes involving iron, ascorbic acid, and essential amino acids (AsA-Fe-AmA triple chelate complexes) for the first time. The mechanism of complex formation was studied using FTIR spectroscopy and quantum chemical modeling. The produced complexes were shown to be suitable for fortifying food items with a pH of 3-7 that have not been exposed to heat treatment at temperatures over 75 °C for more than 15 min.
View Article and Find Full Text PDFThis study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.
View Article and Find Full Text PDFSelenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium.
View Article and Find Full Text PDF