The data reported here were directly used in the research article entitled "A novel approach to build algal consortia for sustainable biomass production (Mandal and Corcoran, 2022)". Data were collected to (1) generate microalgal consortia through a functional diversity approach and (2) test generated consortia against monocultures. Algal trait data (i.
View Article and Find Full Text PDFSpecies of are single-celled Stramenopiles commonly used in microalgae-based technologies for the manufacturing of bioproducts. Nannochloropsis oceanica QH25 was isolated from an algal cultivation pond located in Imperial, Texas (USA). We used PacBio continuous long read (CLR) sequencing to produce a highly contiguous 29.
View Article and Find Full Text PDFAlgae hold particular promise as a feedstock for biomaterials, as they are capable of producing a wide variety of polymers with the properties required for 3D printing. However, the use of algal polymers has been limited to alginate, agar, carrageenan, and ulvan extracted from seaweeds. Diverse algal taxa beyond seaweeds have yet to be explored.
View Article and Find Full Text PDFMicroalgae are increasingly used to generate a wide range of commercial products, and there is growing evidence that microalgae-based products can be produced sustainably. However, industrial production of microalgal biomass is not as developed as other biomanufacturing platform technologies. In addition, results of bench-scale research often fail to translate to large-scale or mass production systems.
View Article and Find Full Text PDFDespite nearly annual blooms of the neurotoxic dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup in the Gulf of Mexico, defining the suite of biological traits that explain its proliferation has remained challenging. Studies have described K.
View Article and Find Full Text PDFHigh-biomass blooms of the toxic dinoflagellate Pyrodinium bahamense occur most summers in Tampa Bay, Florida, USA, posing a recurring threat to ecosystem health. Like many dinoflagellates, P. bahamense forms immobile resting cysts that can be deposited on the seafloor-creating a seed bank that can retain the organism within the ecosystem and initiate future blooms when cysts germinate.
View Article and Find Full Text PDFNearly annual blooms of the marine dinoflagellate Karenia brevis, which initiate offshore on the West Florida Shelf in oligotrophic waters, cause widespread environmental and economic damage. The success of K. brevis as a bloom-former is partially attributed to its ability to use a diverse suite of nutrients from natural and anthropogenic sources, although relatively little is known about the ability of K.
View Article and Find Full Text PDFThe most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters.
View Article and Find Full Text PDFWith the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills.
View Article and Find Full Text PDFGlobal biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation.
View Article and Find Full Text PDFWe validate a method that simultaneously measures O(2) and CO(2) fluxes by sampling headspace air in phytoplankton cultures. Fluxes were strongly correlated to traditional productivity measures, except for a taxon with unique C metabolism. The method provides accurate, real-time, non-destructive measurements and is recommended for laboratory studies of phytoplankton physiology.
View Article and Find Full Text PDF