Prostaglandins Other Lipid Mediat
April 2024
Derivatives of polyunsaturated fatty acids (PUFAs), also known as oxylipins, are key participants in regulating inflammation. Neuroinflammation is involved in many neurodegenerative diseases, including Parkinson's disease. The development of ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) facilitated the study of oxylipins on a system level, i.
View Article and Find Full Text PDFThe involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC).
View Article and Find Full Text PDFRecently, manipulations with reactive astrocytes have been viewed as a new therapeutic approach that will enable the development of treatments for acute brain injuries and neurodegenerative diseases. Astrocytes can release several substances, which may exert neurotoxic or neuroprotective effects, but the nature of these substances is still largely unknown. In the present work, we tested the hypothesis that these effects may be attributed to oxylipins, which are synthesized from n-3 or n-6 polyunsaturated fatty acids (PUFAs).
View Article and Find Full Text PDFHyperglycemia is associated with several complications in the brain, which are also characterized by inflammatory conditions. Astrocytes are responsible for glucose metabolism in the brain and are also important participants of inflammatory responses. Oxylipins are lipid mediators, derived from the metabolism of polyunsaturated fatty acids (PUFAs) and are generally considered to be a link between metabolic and inflammatory processes.
View Article and Find Full Text PDFNeuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation.
View Article and Find Full Text PDFAstrocytes are glial cells that play an important role in neuroinflammation. Astrocytes respond to many pro-inflammatory stimuli, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4). Regulatory specificities of inflammatory signaling pathways are still largely unknown due to the ectodermal origin of astrocytes.
View Article and Find Full Text PDFWilson's disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD.
View Article and Find Full Text PDFFunctional phenotypes, which cells can acquire depending on the microenvironment, are currently the focus of investigations into new anti-inflammatory therapeutic approaches. Glial cells, microglia, and astrocytes are major participants in neuroinflammation, but their roles differ, as microglia are cells of mesodermal origin, while astrocytes are cells of ectodermal origin. The inflammatory phenotype of cells can be modulated by ω-6- and ω-3-polyunsaturated fatty acid-derived oxylipins, although data on changes in oxylipin profiles in different cell adaptations to pro- and anti-inflammatory stimuli are scarce.
View Article and Find Full Text PDFIntroduction: Ocular inflammation is a key pathogenic factor in most blindness-causing visual disorders. It can manifest in the aqueous humor (AH) and tear fluid (TF) as alterations in polyunsaturated fatty acids (PUFAs) and their metabolites, oxylipins, lipid mediators, which are biosynthesized via enzymatic pathways involving lipoxygenase, cyclooxygenase or cytochrome P450 monooxygenase and specifically regulate inflammation and resolution pathways.
Objectives: This study aimed to establish the baseline patterns of PUFAs and oxylipins in AH and TF by their comprehensive lipidomic identification and profiling in humans in the absence of ocular inflammation and comparatively analyze these compounds in the eye liquids of rabbits, the species often employed in investigative ophthalmology.
A phenomenon of endotoxin tolerance where prior exposure of cells to minute amounts of lipopolysaccharide (LPS) causes them to become refractory to a subsequent high-amount endotoxin challenge is well described for innate immune cells such as monocytes/macrophages, but it is still obscure for brain cells. We exposed primary rat cortical astrocytes to a long-term low-grade concentration of LPS, followed by stimulation with a middle-grade concentration of LPS. Inflammatory markers, i.
View Article and Find Full Text PDFHyaluronic acid (HA), a major glycosaminoglycan of the extracellular matrix, has cell signaling functions that are dependent on its molecular weight. Anti-inflammatory effects for high-molecular-weight (HMW) HA and pro-inflammatory effects for low-molecular-weight (LMW) HA effects were found for various myeloid cells, including microglia. Astrocytes are cells of ectodermal origin that play a pivotal role in brain inflammation, but the link between HA with different molecular weights and an inflammatory response in these cells is not clear.
View Article and Find Full Text PDFAstrocytes play a vital role in regulating central nervous system inflammation, energy metabolism and brain homeostasis. Unlike macrophages and microglia, which are cells of myeloid ancestry, astrocytes are of ectodermal origin. However, regulatory specificities of signaling pathways connecting inflammatory and metabolic processes are still largely unknown.
View Article and Find Full Text PDFAlthough many neurological and psychiatric disorders reveal clear sex-dependent variations, the molecular mechanism of this process is not clear enough. Astrocytes are involved in the response of neural tissue to injury and inflammation, produce steroid hormones, and sense steroid presence. To explore the hypothesis that astrocytes may participate in sex-mediated differences of inflammatory responses, we have examined whether male and female primary rat astrocytes show different responses to lipopolysaccharide (LPS) as a toll-like receptor 4 (TLR4) agonist.
View Article and Find Full Text PDFRelationship between mood disorders and inflammation is now well-documented, although molecular mechanisms are not understood. Previously mostly pro-inflammatory cytokines of immune system (IL-6, TNF, etc.) were taken into account.
View Article and Find Full Text PDFControl of decay of mRNA containing the adenine-uridine rich elements (AREs) is an important post-transcriptional mechanism involved in the regulation of inflammatory gene expression. Two widely recognized proteins in this machinery are HuR (human antigen R) - a protein that stabilizes ARE-containing mRNA and TTP (tristetraprolin) - a protein that shortens half-lives of ARE-containing mRNA. Although HuR and TTP regulation mechanisms have been well studied in cells of hematopoietic origin, there are no respective data in astrocytes, cells of ectodermal origin which play an important role in neuroinflammation.
View Article and Find Full Text PDFAn antidiabetic drug of the thiazolidinedione class, rosiglitazone (RG) demonstrates anti-inflammatory properties in various brain pathologies. The mechanism of RG action in brain cells is not fully known. To unravel mechanisms of RG modulation of toll-like receptor (TLR) signaling pathways, we compare primary rat neuron and astrocyte cultures stimulated with the TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist poly I:C (PIC).
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPAR)-α and -γ in astrocytes play important roles in inflammatory brain pathologies. Understanding the regulation of both activity and expression levels of PPARs is an important neuroscience issue. Toll-like receptor (TLR) agonists are inflammatory stimuli that could modulate PPAR, but the mechanisms of their control in astrocytes are poorly understood.
View Article and Find Full Text PDF