Publications by authors named "Aliki K Tzima"

Background: Verticilium dahliae is the most important wilt pathogen of olive trees with a broad host range causing devastating diseases currently without any effective chemical control. Traditional detection methodologies are based on symptoms-observation or lab-detection using time consuming culturing or molecular techniques. Therefore, there is an increasing need for portable tools that can detect rapidly V.

View Article and Find Full Text PDF

A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.

View Article and Find Full Text PDF

It has been suggested that some microorganisms, including plant growth-promoting rhizobacteria, manipulate the level of ethylene in plants by degrading 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene precursor, into α-ketobutyrate and ammonia, using ACC deaminase (ACCd). Here, we investigated whether ACCd of , a soil-borne fungal pathogen of many important crops, is involved in causing vascular wilt disease. Overexpression of the gene encoding this enzyme, labeled as , significantly increased virulence in both tomato and eggplant, while disruption of reduced virulence.

View Article and Find Full Text PDF

Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens-mediated transformation (ATMT) protocols were unsuccessful.

View Article and Find Full Text PDF

To gain insight into the role of G protein-mediated signaling in virulence and development of the soilborne, wilt causing fungus Verticillium dahliae, the G protein β subunit gene (named as VGB) was disrupted in tomato race 1 strain of V. dahliae. A resulting mutant strain, 70ΔGb15, displayed drastic reduction in virulence, increased microsclerotia formation and conidiation, and decreased ethylene production compared to the corresponding wild type (wt) strain 70wt-r1.

View Article and Find Full Text PDF

Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall-degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V.

View Article and Find Full Text PDF