Cancer and oxidative stress are interrelated, with reactive oxygen species (ROS) playing crucial roles in physiological processes and oncogenesis. Excessive ROS levels can induce DNA damage, leading to cancer, and disrupt antioxidant defenses, contributing to diseases like diabetes and cardiovascular disorders. Antioxidant mechanisms include enzymes and small molecules that mitigate ROS damage.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2023
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents.
View Article and Find Full Text PDF