Publications by authors named "Alikaniotis K"

The E_LIBANS project (INFN) aims at producing neutron facilities for interdisciplinary irradiation purposes among which pre-clinical research for BNCT. After the successful setting-up of the thermal neutron source based on a medical LINAC, a similar apparatus for epithermal neutrons has been developed. Both structures are based on an Elekta 18 MV coupled with a photoconverter-moderator system which deploys the (γ,n) reaction to convert the X-rays into neutrons.

View Article and Find Full Text PDF

Radiation-resistant, gamma-insensitive, active thermal neutron detectors were developed to monitor the thermal neutron cavity of the E_LIBANS project. Silicon and silicon carbide semiconductors, plus vented air ion chambers, were chosen for this purpose. This communication describes the performance of these detectors, owing on the results of dedicated measurement campaigns.

View Article and Find Full Text PDF

Conventional linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons due to photonuclear processes. The neutron presence is considered as an extra undesired dose during the radiotherapy treatment, which could cause secondary radio-induced tumors and malfunctions to cardiological implantable devices. It is thus important to measure the neutron dose contribution to patients during radiotherapy, not only at high-energy LINACs, but also at lower energies, near the giant dipole resonance reaction threshold.

View Article and Find Full Text PDF

The e_LiBANS project aims at producing intense thermal neutron fields for diverse interdisciplinary irradiation purposes. It makes use of a reconditioned medical electron LINAC, recently installed at the Physics Department and INFN in Torino, coupled to a dedicated photo-converter, developed within this collaboration, that uses (γ,n) reaction within high Z targets. Produced neutrons are then moderated to thermal energies and concentrated in an irradiation volume.

View Article and Find Full Text PDF

Aim: To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness.

Background: Conventional high-energy (15-25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment.

View Article and Find Full Text PDF

The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10(7) cm(-2) s(-1). This paper investigates possible Linac's modifications and a new photo-converter design to rise the neutron flux above 5 10(7) cm(-2) s(-1), also reducing the gamma contamination.

View Article and Find Full Text PDF