Antibody engineering technology is at the forefront of therapeutic antibody development. The primary goal for engineering a therapeutic antibody is the generation of an antibody with a desired specificity, affinity, function, and developability profile. Mature antibodies are considered antigen specific, which may preclude their use as a starting point for antibody engineering.
View Article and Find Full Text PDFProtein homeostasis in eukaryotic cells is regulated by 2 highly conserved degradative pathways, the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Recent studies revealed a coordinated and complementary crosstalk between these systems that becomes critical under proteostatic stress. Under physiological conditions, however, the molecular crosstalk between these 2 pathways is still far from clear.
View Article and Find Full Text PDFWe propose a model-driven methodology aimed to shed light on complex disorders. Our approach enables exploring shared etiologies of comorbid diseases at the molecular pathway level. The method, Comparative Comorbidities Simulation (CCS), uses stochastic Petri net simulation for examining the phenotypic effects of perturbation of a network known to be involved in comorbidities to predict new roles for mutations in comorbid conditions.
View Article and Find Full Text PDFHereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin β-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown.
View Article and Find Full Text PDFAutophagy is a dynamic catabolic process that plays a major role in sequestering and recycling cellular components in multiple physiological and pathophysiological conditions. Despite recent progress in our understanding of the autophagic process there is still a shortage of robust methods for monitoring autophagy in live cells. Flow cytometry, a reliable and unbiased method for quantitative collection of data in a high-throughput manner, was recently utilized to monitor autophagic activity in live and fixed mammalian cells.
View Article and Find Full Text PDFCellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin.
View Article and Find Full Text PDFEfficient degradation of cellulose by the anaerobic thermophilic bacterium, Clostridium thermocellum, is carried out by the multi-enzyme cellulosome complex. The enzymes on the complex are attached in a calcium-dependent manner via their dockerin (Doc) module to a cohesin (Coh) module of the cellulosomal scaffoldin subunit. In this study, we have optimized the Coh-Doc interaction for the purpose of protein affinity purification.
View Article and Find Full Text PDF