Despite recent advances in the mechanism of oxidized DNA activating NLRP3, the molecular mechanism and consequence of oxidized DNA associating with NLRP3 remains unknown. Cytosolic NLRP3 binds oxidized DNA which has been released from the mitochondria, which subsequently triggers inflammasome activation. Human glycosylase (hOGG1) repairs oxidized DNA damage which inhibits inflammasome activation.
View Article and Find Full Text PDFInteractions between proteins and small molecules or nucleic acids play a pivotal role in numerous biological processes critical for human health and are fundamental for advancing our understanding of biological systems. Proteins are the workhorses of the cell, executing various functions ranging from catalyzing biochemical reactions to transmitting signals within the body. Small molecules, including drugs and metabolites, can modulate protein activity, thereby impacting cellular processes and disease pathways.
View Article and Find Full Text PDFUnlabelled: Despite recent advances in the mechanism of oxidized DNA activating NLRP3, the molecular mechanism and consequence of oxidized DNA associating with NLRP3 remains unknown. Cytosolic NLRP3 binds oxidized DNA which has been released from the mitochondria, which subsequently triggers inflammasome activation. Human glycosylase (hOGG1) repairs oxidized DNA damage which inhibits inflammasome activation.
View Article and Find Full Text PDF