The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3 myeloids and CD19 myeloids.
View Article and Find Full Text PDFGlioblastoma presents a formidable clinical challenge because of its complex microenvironment. Here, we characterized tumor-associated foam cells (TAFs), a type of lipid droplet-loaded macrophage, in human glioblastoma. Through extensive analyses of patient tumors, together with in vitro and in vivo investigations, we found that TAFs exhibit distinct protumorigenic characteristics related to hypoxia, mesenchymal transition, angiogenesis, and impaired phagocytosis, and their presence correlates with worse outcomes for patients with glioma.
View Article and Find Full Text PDFOligodendrogliomas are typically associated with the most favorable prognosis among diffuse gliomas. However, many of the tumors progress, eventually leading to patient death. To characterize the changes associated with oligodendroglioma recurrence and progression, we analyzed two recurrent oligodendroglioma tumors upon diagnosis and after tumor relapse based on whole-genome and RNA sequencing.
View Article and Find Full Text PDFDeregulation of fibroblast growth factor receptor (FGFR) signaling is tightly associated with numerous human malignancies, including cancer. Indeed, FGFR inhibitors are being tested as anti-tumor drugs in clinical trials. Among gliomas, FGFR3 fusions occur in IDH wild-type diffuse gliomas leading to high FGFR3 protein expression and both, FGFR3 and FGFR1, show elevated expression in aggressive ependymomas.
View Article and Find Full Text PDF