Local interactions between unlike molecules (1-2) in solution are commonly measured with spectroscopy and used to estimate local composition. Herein, a viscosity model based on preferential solvation (PS) theory is developed for aqueous and nonaqueous binary liquid mixtures containing a dipolar aprotic solvent that provides local composition considering the hydration or solvation shell around complex (1-2) molecules. Spectral-derived and viscosity-derived local composition distributions showed similar trends with bulk composition, and their correspondence is attributed to characteristics of the hydration or solvation shell.
View Article and Find Full Text PDFKamlet-Taft solvatochromic parameters (polarity, basicity, acidity) of hydrogen bond donor (HBD)/acceptor (HBA) mixed-solvent systems, water (H2O)-γ-valerolactone (GVL), methanol (MeOH)-GVL, ethanol (EtOH)-GVL, H2O-γ-butyrolactone (GBL), MeOH-GBL, and EtOH-GBL, were measured over their entire composition region at 25 °C using UV-vis spectroscopy. Basicity of H2O-GVL and H2O-GBL systems exhibited positive deviation from ideality and synergism in the Kamlet-Taft basicity values. The cybotactic region around each indicator in the mixed-solvent systems was analyzed with the preferential solvation model.
View Article and Find Full Text PDFHydrogen bond donor/acceptor mixed-solvent systems for solutes that exhibit strong specific interactions are not readily characterized with methods that depend on solvatochromic parameters. In this work, the reaction of two monomers, 4,4′-oxidianiline (ODA) and pyromellitic dianhydride (PMDA), to form the common engineering plastic precursor, poly(amic acid) (PAA), are studied for the tetrahydrofuran (THF) mixed-solvent systems (THF-methanol, THF-ethanol, THF-water) with spectroscopy. Solute-centric (SC) Kamlet–Taft solvatochromic (K-T) parameters for the solvent environment around the monomer are determined using a proposed model that incorporates spectroscopically determined local composition (X(L)) around the ODA monomer and the preferential solvation model.
View Article and Find Full Text PDF