A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study.
View Article and Find Full Text PDFAutoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome.
View Article and Find Full Text PDFAs human and chimpanzee genomes show high homology for and , we analyzed the sera of 367 healthy chimpanzees obtained during routine physical examinations in a single colony and measured chimpanzee insulin-like growth factor (IGF)-1 and prolactin (PRL) levels across the lifespan using standard human immunoassays. Assuming chimpanzee IGF-1 levels peak during puberty as in humans, we randomly defined puberty as the age at which most IGF-1 levels were equal to or above the 90 percentile for each sex (males, ages ≥7.00 but <9.
View Article and Find Full Text PDFGraves' disease, caused by autoantibodies that activate the thyrotropin (TSH) receptor (TSHR), has only been reported in humans. Thyroiditis-prone NOD. mice develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO) but not to the TSHR.
View Article and Find Full Text PDFTransgenic NOD. mice that express the human (h) TSHR A-subunit in the thyroid gland spontaneously develop pathogenic TSHR autoantibodies resembling those in patients with Graves disease. Nanoparticles coupled to recombinant hTSHR A-subunit protein and a tolerogenic molecule (ligand for the endogenous aryl-hydrocarbon receptor; ITE) were injected i.
View Article and Find Full Text PDFNOD.H2 mice are the most commonly used model for human autoimmune thyroiditis. Because thyroid autoimmunity develops slowly (over months), NOD.
View Article and Find Full Text PDFBackground: Thyroid hemiagenesis, a rare congenital condition detected by ultrasound screening of the neck, is usually not manifested clinically in humans. This condition has been reported in mice with hypothyroidism associated with induced deficiency in paired box 8 and NK2 homeobox 1, sonic hedgehog, or T-box 1. Unexpectedly, we observed thyroid hemiagenesis in NOD.
View Article and Find Full Text PDFWe investigated factors underlying the varying effects of a high dietary iodide intake on serum T4 levels in a wide spectrum of mouse strains, including thyroiditis-susceptible NOD.H2, NOD.H2, and NOD mice, as well as other strains (BALB/c, C57BL/6, NOD.
View Article and Find Full Text PDFSelenium (Se) is a critical element in thyroid function, and variable dietary Se intake influences immunity. Consequently, dietary Se could influence development of thyroid autoimmunity and provide an adjunct to treat autoimmune thyroid dysfunction. Nonobese diabetic (NOD).
View Article and Find Full Text PDFThyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.
View Article and Find Full Text PDFThe thyrotrophin receptor (TSHR) A-subunit is the autoantigen targeted by pathogenic autoantibodies that cause Graves' hyperthyroidism, a common autoimmune disease in humans. Previously, we reported that pathogenic TSHR antibodies develop spontaneously in thyroiditis-susceptible non-obese diabetic (NOD).H2 mice bearing a human TSHR A-subunit transgene, which is expressed at low levels in both the thyroid and thymus (Lo-expressor transgene).
View Article and Find Full Text PDFGraves' hyperthyroidism, a common autoimmune disease caused by pathogenic autoantibodies to the thyrotropin (TSH) receptor (TSHR), can be treated but not cured. This single autoantigenic target makes Graves' disease a prime candidate for Ag-specific immunotherapy. Previously, in an induced mouse model, injecting TSHR A-subunit protein attenuated hyperthyroidism by diverting pathogenic TSHR Abs to a nonfunctional variety.
View Article and Find Full Text PDFContext: The TSH receptor (TSHR) A-subunit shed from the cell surface contributes to the induction and/or affinity maturation of pathogenic TSHR autoantibodies in Graves' disease.
Objective: This study aimed to determine whether the quaternary structure (multimerization) of shed A-subunits influences pathogenic TSHR autoantibody generation.
Design: The isolated TSHR A-subunit generated by transfected mammalian cells exists in two forms; one (active) is recognized only by Graves' TSHR autoantibodies, the second (inactive) is recognized only by mouse monoclonal antibody (mAb) 3BD10.
Abs that stimulate the thyrotropin receptor (TSHR), the cause of Graves' hyperthyroidism, only develop in humans. TSHR Abs can be induced in mice by immunization, but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.
View Article and Find Full Text PDFNOD.H2(k) and NOD.H2(h4) mice carry the major histocompatibility complex (MHC) class II molecule I-A(k) associated with susceptibility to experimentally induced thyroiditis.
View Article and Find Full Text PDFGraves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4.
View Article and Find Full Text PDFBackground: Previously, we studied the genetic basis for variability in total thyroxine (TT4) as part of investigating induced Graves' hyperthyroidism in panels of genetically diverse recombinant inbred (RI) mice. Because Graves' disease occurs predominantly in women, we used female mice. A limitation of this approach is that thyrotropin (TSH) is undetectable by some assays in most female mice.
View Article and Find Full Text PDFThe great apes include, in addition to Homo, the genera Pongo (orangutans), Gorilla (gorillas), and Pan, the latter comprising two species, P. troglodytes (chimpanzees) and P. paniscus (bonobos).
View Article and Find Full Text PDFBackground: Graves' hyperthyroidism is induced by immunizing mice with adenovirus expressing the human thyrotropin (TSH)-receptor. Using families of recombinant-inbred mice, we previously discovered that genetic susceptibility to induced thyroid-stimulating antibodies and hyperthyroidism are linked to loci on different chromosomes, indicating a fundamental genetic difference in thyroid sensitivity to ligand stimulation. An approach to assess thyroid sensitivity involves challenging genetically diverse lines of mice with TSH and measuring the genotype/strain-specific increase in serum thyroxine (T4).
View Article and Find Full Text PDFTransgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice.
View Article and Find Full Text PDFBackground: Graves'-like disease, reflected by thyrotropin receptor (TSHR) antibodies and hyperthyroidism in some mouse strains, can be induced by immunization with adenovirus-expressing DNA for the human TSHR or its A-subunit. The conventional approach involves two or three adenovirus injections at 3-week intervals and euthanasia 10 weeks after the first injection. To investigate TSHR antibody persistence in mice with differing degrees of self-tolerance to the TSHR A-subunit, we studied the effect of delaying euthanasia until 20 weeks after the initial immunization.
View Article and Find Full Text PDFBackground: Graves'-like disease, reflected by TSHR antibodies and hyperthyroidism in some mouse strains, can be induced by immunization with adenovirus expressing DNA for the human thyrotropin receptor (TSHR) or it's A-subunit. The conventional approach involves two or three adenovirus injections at three-weekly intervals and euthanasia 10 weeks after the first injection. In order to investigate TSHR antibody persistence in mice with differing degrees of self-tolerance to the TSHR A-subunit, we studied the effect of delaying euthanasia until 20 weeks after the initial immunization.
View Article and Find Full Text PDFAutoimmune hyperthyroidism, Graves' disease, can be induced by immunizing susceptible strains of mice with adenovirus encoding the human thyrotropin receptor (TSHR) or its A-subunit. Studies in two small families of recombinant inbred strains showed that susceptibility to developing TSHR antibodies (measured by TSH binding inhibition, TBI) was linked to the MHC region whereas genes on different chromosomes contributed to hyperthyroidism. We have now investigated TSHR antibody production and hyperthyroidism induced by TSHR A-subunit adenovirus immunization of a larger family of strains (26 of the AXB and BXA strains).
View Article and Find Full Text PDFBackground: Gonadotropin receptors, unlike the thyrotropin receptor (TSHR), are not cleaved into disulfide-linked A- and B-subunits, nor do they shed A-subunits. Heavily glycosylated TSHR A-subunits initiate or amplify responses leading to stimulating TSHR-autoantibodies and Graves' hyperthyroidism.
Methods: To investigate the possibility that mice immunized with luteinizing hormone receptor (LHR) would develop functional antibodies, we constructed adenoviruses expressing the rat-LH holoreceptor (LHR-Ad) and an LHR A-subunit equivalent (LHR-289-Ad).