For non-viral gene delivery we prepared stabilized plasmid lipid particles (SPLPs), to which lactoferrin (LF) was coupled as a hepatocyte specific targeting ligand. LF-SPLPs and untargeted SPLPs labeled with [3H]cholesteryloleyl-ether were injected into rats. About 87% of the LF-SPLPs were eliminated from the blood within 5 min, while 80% of untargeted SPLPs were still circulating after 2 h.
View Article and Find Full Text PDFIt is well recognized that there is an urgent need for non-toxic systemically applicable vectors for biologically active nucleotides to fully exploit the current potential of molecular medicine in gene therapy. Cell-specific targeting of non-viral lipid-based carriers for ODN and DNA is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. In this review we will address the most promising approaches to selective targeting of liposomal nucleic acid carriers in vivo.
View Article and Find Full Text PDFWe report on the preparation and in vivo/in vitro disposition of antisense ODN encapsulating coated cationic lipoplexes (CCLs), prepared by a procedure essentially developed by Stuart and Allen (Stuart, D.D. and Allen, T.
View Article and Find Full Text PDFWe prepared polyethylene glycol (PEG)-stabilized antisense oligonucleotide (ODN)/lipid particles from a lipid mixture including the positively charged amphiphile 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and anti-intercellular adhesion molecule 1 (ICAM-1) antisense ODN by an extrusion method in the presence of 40% ethanol. These particles were targeted to scavenger receptors on liver endothelial cells by means of covalently coupled polyanionized albumin. Two types of such targeted particles were prepared, one with the albumin coupled to a maleimide group attached to the particle's lipid bilayer and the other with the protein coupled to a maleimide group attached at the distal end of added bilayer-anchored PEG chains.
View Article and Find Full Text PDFPurpose: Previously we reported on massive uptake of liposomes surface-modified with negatively charged aconitylated albumin (AcoHSA) by liver sinusoidal endothelial cells (EC) in vivo. In the present work we applied this principle for the in vivo delivery of antisense oligonucleotides (ODN) to these cells.
Methods: Anti ICAM-1 ODN was complexed with the cationic lipid DOTAP and the complex was coated by an excess of neutral lipids including a lipid-anchored poly(ethylene glycol).