Background: Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world - lung cancer, their interrelations are not well understood. Digital pathology data provides a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from this data.
View Article and Find Full Text PDFMachine learning algorithms hold the promise to effectively automate the analysis of histopathological images that are routinely generated in clinical practice. Any machine learning method used in the clinical diagnostic process has to be extremely accurate and, ideally, provide a measure of uncertainty for its predictions. Such accurate and reliable classifiers need enough labelled data for training, which requires time-consuming and costly manual annotation by pathologists.
View Article and Find Full Text PDF