Publications by authors named "Alicia d'Anjou"

It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential.

View Article and Find Full Text PDF

Fundamentally, action potentials in the squid axon are consequence of the entrance of sodium ions during the depolarization of the rising phase of the spike mediated by the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect metabolic efficiency with a minimum charge needed for the change in voltage during the action potential would confine sodium entry to the rising phase and potassium efflux to the falling phase. However, because sodium channels remain open to a significant extent during the falling phase, a certain overlap of inward and outward currents is observed.

View Article and Find Full Text PDF

The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four-dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced.

View Article and Find Full Text PDF

The high-order Boltzmann machine (HOBM) approximates probability distributions defined on a set of binary variables, through a learning algorithm that uses Monte Carlo methods. The approximation distribution is a normalized exponential of a consensus function formed by high-degree terms and the structure of the HOBM is given by the set of weighted connections. We prove the convexity of the Kullback-Leibler divergence between the distribution to learn and the approximation distribution of the HOBM.

View Article and Find Full Text PDF