Publications by authors named "Alicia Sanz-Sanz"

Background: Huntington's disease is an inheritable autosomal dominant disorder caused by an expanded CAG trinucleotide repeat within the Huntingtin gene, leading to a polyglutamine (polyQ) expansion in the mutant protein.

Objective: A potential therapeutic approach for delaying or preventing the onset of the disease involves enhancing the degradation of the aggregation-prone polyQ-expanded N-terminal mutant huntingtin (mHTT) exon1 fragment. A few proteases and peptidases have been identified that are able to cleave polyQ fragments with low efficiency.

View Article and Find Full Text PDF

Huntington's disease is an autosomal dominant heritable disorder caused by an expanded CAG trinucleotide repeat at the N-terminus of the Huntingtin (HTT) gene. Lowering the levels of soluble mutant HTT protein prior to aggregation through increased degradation by the proteasome would be a therapeutic strategy to prevent or delay the onset of disease. Native PAGE experiments in HdhQ150 mice and R6/2 mice showed that PA28αβ disassembles from the 20S proteasome during disease progression in the affected cortex, striatum and hippocampus but not in cerebellum and brainstem.

View Article and Find Full Text PDF

The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes.

View Article and Find Full Text PDF

Huntington disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat within the protein huntingtin (Htt). N-terminal fragments of the mutant Htt (mHtt) proteins containing the polyQ repeat are aggregation-prone and form intracellular inclusion bodies. Improving the clearance of mHtt fragments by intracellular degradation pathways is relevant to obviate toxic mHtt species and subsequent neurodegeneration.

View Article and Find Full Text PDF

MPP3 and CRB1 both interact directly with PALS1/MPP5 and through this scaffold protein may form a large protein complex. To investigate the role of MPP3 in the retina we have analyzed conditional mutant Mpp3 knockout mice. Ultrastructural localization studies revealed that MPP3 is predominantly localized in apical villi of Müller glia cells.

View Article and Find Full Text PDF

During mammalian cortical development, division of progenitor cells occurs at the apical ventricular zone. Apical complex proteins and adherens junctions regulate the different modes of division. Here, we have identified the membrane-associated guanylate kinase protein membrane palmitoylated protein 3 (MPP3) as an essential protein for the maintenance of these complexes.

View Article and Find Full Text PDF

In humans, the Crumbs homolog-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease. Therefore, to understand the physiological role of the Crumbs complex proteins, we generated and analysed conditional knockout mice lacking CRB2 in the developing retina.

View Article and Find Full Text PDF

Most cytoplasmic and nuclear proteins are degraded via the ubiquitin-proteasome system into peptides, which are subsequently hydrolyzed by downstream aminopeptidases. Inefficient degradation can lead to accumulation of protein fragments, and subsequent aggregation and toxicity. Whereas the role of the proteasome and the effect of its impairment on aggregation have been intensively studied, little is known about how cells deal with peptides that show resistance to degradation by aminopeptidases.

View Article and Find Full Text PDF

Mutations in the human Crumbs homologue-1 (CRB1) gene cause retinal blinding diseases, such as Leber congenital amaurosis and retinitis pigmentosa. In the previous studies we have shown that Crb1 resides in retinal Müller glia cells and that loss of Crb1 results in retinal degeneration (particularly in the inferior temporal quadrant of the mouse eye). Degeneration is increased by exposure to white light.

View Article and Find Full Text PDF