Carbon nanotubes (CNTs) are nanometer-sized structures that can be used to reinforce cement matrices. The extent to which the mechanical properties are improved depends on the interfacial characteristics of the resulting materials, that is, on the interactions established between the CNTs and the cement. The experimental characterization of these interfaces is still impeded by technical limitations.
View Article and Find Full Text PDFOver the last few years, the addition of small amounts of carbon nanotubes (CNTs) to construction materials has become of great interest, since it enhances some of the mechanical, electrical and thermal properties of the cement. In this sense, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) can be incorporated into cement to achieve the above-mentioned improved features. Thus, the current study presents the results of the addition of SWCNTs and MWCNTs on the microstructure and the physical properties of the cement paste.
View Article and Find Full Text PDFConcrete is well known for its compression resistance, making it suitable for any kind of construction. Several research studies show that the addition of carbon nanostructures to concrete allows for construction materials with both a higher resistance and durability, while having less porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of long cylindrical molecules with a nanoscale diameter.
View Article and Find Full Text PDFThe main objective of this study is to create a rigorous computer model of carbon nanotube composites to predict their mechanical properties before they are manufactured and to reduce the number of physical tests. A detailed comparison between experimental and computational results of a cement-based composite is made to match data and find the most significant parameters. It is also shown how the properties of the nanotubes (Young's modulus, aspect ratio, quantity, directionality, clustering) and the cement (Young's modulus) affect the composite properties.
View Article and Find Full Text PDFThe excessive use of antibiotics has contributed to the rise in antibiotic-resistant bacteria, and thus, new antibacterial compounds must be developed. Composite materials based on graphene and its derivatives doped with metallic and metallic oxide nanoparticles, particularly Ag, Cu, and Cu oxides, hold great promise. These materials are often modified with polyethylene glycol (PEG) to improve their pharmacokinetic behavior and their solubility in biological media.
View Article and Find Full Text PDF