The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
View Article and Find Full Text PDFBacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2023
The alveolar epithelial glycocalyx is a dense anionic layer of glycosaminoglycans (GAGs) and proteoglycans that lines the apical surface of the alveolar epithelium. In contrast to the pulmonary endothelial glycocalyx, which has well-established roles in vascular homeostasis and septic organ dysfunction, the alveolar epithelial glycocalyx is less understood. Recent preclinical studies demonstrated that the epithelial glycocalyx is degraded in multiple murine models of acute respiratory distress syndrome (ARDS), particularly those that result from inhaled insults (so-called "direct" lung injury), leading to shedding of GAGs into the alveolar airspaces.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a common and life-threatening cause of respiratory failure. Despite decades of research, there are no effective pharmacologic therapies to treat this disease process and mortality remains high. The shortcomings of prior translational research efforts have been increasingly attributed to the heterogeneity of this complex syndrome, which has led to an increased focus on elucidating the mechanisms underlying the interpersonal heterogeneity of ARDS.
View Article and Find Full Text PDFUnlabelled: Colorado issued a month long statewide lockdown on March 26, 2020, during the initial surge of the COVID-19 pandemic. The impact of this mandate on non-COVID-19 ICU admission rates and outcomes is unclear.
Design: We performed a retrospective analysis of all medical ICU admissions in the University of Colorado Health System in four predefined periods: 1) prepandemic (2 mo prior to lockdown period 1); 2) mandated lockdown from March 26 to April 26, 2020 (period 2); 3) between surges (period 3); and 4) nonmandated lockdown surge (between November 1, 2020, and March 31, 2021, period 4).
Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation.
View Article and Find Full Text PDFThe genetic factors that determine a patient's risk for developing the acute respiratory distress syndrome (ARDS) remain understudied. In this issue of the JCI, Reilly and colleagues analyzed data from three cohorts of critically ill patients and observed an association between the ABO allele A1 and the onset of moderate-severe ARDS. This association was most notable in patients with non-pulmonary sepsis (an indirect, vasculature-targeted mechanism of lung injury) and persisted in patients who lacked epithelial expression of the A antigen, suggesting an endothelial mechanism of A1-associated ARDS susceptibility.
View Article and Find Full Text PDFAcute Respiratory Distress Syndrome (ARDS) is a devastating disease process that involves dysregulated inflammation and decreased alveolar-capillary barrier function. Despite increased understanding of the pathophysiology, no effective targeted therapies exist to treat ARDS. Recent preclinical studies suggest that the multi-tyrosine kinase inhibitor, imatinib, which targets the Abl kinases c-Abl and Arg, has the potential to restore endothelial dysfunction caused by inflammatory agonists.
View Article and Find Full Text PDFIntroduction: Pseudogenes are paralogues of functional genes historically viewed as defunct due to either the lack of regulatory elements or the presence of frameshift mutations. Recent evidence, however, suggests that pseudogenes may regulate gene expression, although the functional role of pseudogenes remains largely unknown. We previously reported that MYLKP1, the pseudogene of MYLK that encodes myosin light chain kinase (MLCK), is highly expressed in lung and colon cancer cell lines and tissues but not in normal lung or colon.
View Article and Find Full Text PDFPulmonary endothelial cell (EC) barrier dysfunction and recovery is critical to the pathophysiology of acute respiratory distress syndrome. Cytoskeletal and subsequent cell membrane dynamics play a key mechanistic role in determination of EC barrier integrity. Here, we characterizAQe the actin related protein 2/3 (Arp 2/3) complex, a regulator of peripheral branched actin polymerization, in human pulmonary EC barrier function through studies of transendothelial electrical resistance (TER), intercellular gap formation, peripheral cytoskeletal structures and lamellipodia.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
June 2017
Background: Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear.
View Article and Find Full Text PDFIn addition to superoxide (O2.-) generation from nitric oxide synthase (NOS) oxygenase domain, a new O2.- generation site has been identified in the reductase domain of inducible NOS (iNOS) and neuronal NOS (nNOS).
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2015
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI).
View Article and Find Full Text PDFThe vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function.
View Article and Find Full Text PDFEndothelial nitric oxide synthase (eNOS) is a multifunctional enzyme with roles in diverse cellular processes including angiogenesis, tissue remodeling, and the maintenance of vascular tone. Monomeric and dimeric forms of eNOS exist in various tissues. The dimeric form of eNOS is considered the active form and the monomeric form is considered inactive.
View Article and Find Full Text PDFWhereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactA ΔGCPE: prfA* mutant. The HMBPP-deficient ΔGCPE: mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity.
View Article and Find Full Text PDFDisruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier.
View Article and Find Full Text PDFPatients with acute respiratory distress syndrome (ARDS) exhibit elevated levels of interleukin-6 (IL-6), which correlate with increased morbidity and mortality. The exact role of IL-6 in ARDS has proven difficult to study because it exhibits either pro- or anti-inflammatory actions in mouse models of lung injury, depending on the model utilized. In order to improve understanding of the role of this complex cytokine in ARDS, we evaluated IL-6 using the clinically relevant combination of lipopolysaccharide (LPS) and ventilator-induced lung injury (VILI) in IL-6(-/-) mice.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2014
The statins are now recognized to have pleiotropic properties, including augmentation of endothelial barrier function. To explore the mechanisms involved, we investigated the effect of simvastatin on endothelial cell (EC) tight junctions. Western blotting of human pulmonary artery ECs treated with simvastatin (5 μM) confirmed a significant time-dependent increase (16-48 h) in claudin-5 protein expression compared with controls, without detectable alterations in zonula occludens-1 or occludin.
View Article and Find Full Text PDF