Publications by authors named "Alicia M Pedraza"

Glioblastoma (GBM) is an incurable disease with high intratumoral heterogeneity. Bioinformatic studies have examined transcriptional heterogeneity with differing conclusions. Here, we characterize GBM heterogeneity and highlight critical phenotypic and hierarchical roles for quiescent cancer stem cells (qCSCs).

View Article and Find Full Text PDF

Macrophage targeting therapies have had limited clinical success in glioblastoma (GBM). Further understanding the GBM immune microenvironment is critical for refining immunotherapeutic approaches. Here, we use genetically engineered mouse models and orthotopic transplantation-based GBM models with identical driver mutations and unique cells of origin to examine the role of tumor cell lineage in shaping the immune microenvironment and response to tumor-associated macrophage (TAM) depletion therapy.

View Article and Find Full Text PDF

We test the hypothesis that glioblastoma harbors quiescent cancer stem cells that evade anti-proliferative therapies. Functional characterization of spontaneous glioblastomas from genetically engineered mice reveals essential quiescent stem-like cells that can be directly isolated from tumors. A derived quiescent cancer-stem-cell-specific gene expression signature is enriched in pre-formed patient GBM xenograft single-cell clusters that lack proliferative gene expression.

View Article and Find Full Text PDF

The contribution of lineage identity and differentiation state to malignant transformation is controversial. We have previously shown that adult neural stem and early progenitor cells give origin to glioblastoma. Here we systematically assessed the tumor-initiating potential of adult neural populations at various stages of lineage progression.

View Article and Find Full Text PDF

Concurrent amplifications of EGFR and PDGFRA have been reported in up to 5% of glioblastoma (GBM) and it remains unclear why such independent amplification events, and associated receptor overexpression, would be adaptive during glioma evolution. Here, we document that EGFR and PDGFRA protein co-expression occurs in 37% of GBM. There is wide cell-to-cell variation in the expressions of these receptor tyrosine kinases (RTKs) in stable tumor sphere lines, frequently defining tumor cell subpopulations with distinct sensitivities to growth factors and RTK inhibitors.

View Article and Find Full Text PDF