Publications by authors named "Alicia M McCarthy"

Background: Iodine is an essential micronutrient for thyroid hormone production. Adequate iodine intake and normal thyroid function are important during early development, and breastfed infants rely on maternal iodine excreted in breast milk for their iodine nutrition. The proportion of women in the United States of childbearing age with urinary iodine concentration (UIC) <50 μg/L has been increasing, and a subset of lactating women may have inadequate iodine intake.

View Article and Find Full Text PDF

Background: Physicians play a role in the current prescription drug-abuse epidemic. Surgeons often prescribe more postoperative narcotic pain medication than patients routinely need. Although narcotics are effective for severe, acute, postoperative pain, few evidence-based guidelines exist regarding the routinely required amount and duration of use post-hospital discharge.

View Article and Find Full Text PDF

Hyperinsulinemia is known to promote the progression/worsening of insulin resistance. Evidence reveals a hidden cost of hyperinsulinemia on plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP(2))-regulated filamentous actin (F-actin) structure, components critical to the normal operation of the insulin-regulated glucose transport system. Here we delineated whether increased glucose flux through the hexosamine biosynthesis pathway (HBP) causes PIP(2)/F-actin dysregulation and subsequent insulin resistance.

View Article and Find Full Text PDF

We recently found that plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2))-regulated filamentous actin (F-actin) polymerization was diminished in hyperinsulinemic cell culture models of insulin resistance. Here we delineated whether increased glucose flux through the hexosamine biosynthesis pathway (HBP) causes the PIP(2)/F-actin dysregulation and insulin resistance induced by hyperinsulinemia. Increased HBP activity was detected in 3T3-L1 adipocytes cultured under conditions closely resembling physiological hyperinsulinemia (5 nm insulin for 12 h) and in cells where HBP activity was amplified by 2 mm glucosamine (GlcN).

View Article and Find Full Text PDF

Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity.

View Article and Find Full Text PDF

Following the discovery of insulin 85 yr ago and the realization thereafter that in some individuals, tissues lose their responsiveness to this hormone, an enormous world-wide effort began to dissect the cellular mechanisms of insulin action and define abnormalities in the insulin-resistant state. A clear goal through the years has been to unravel the insulin signal transduction network regulating glucose transport. This line of investigation has provided tremendous insight into the physiology and pathophysiology surrounding the cellular processes controlled by insulin.

View Article and Find Full Text PDF

Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myotubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased GLUT4myc translocation and glucose uptake by approximately 2-fold.

View Article and Find Full Text PDF