Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms.
View Article and Find Full Text PDFAmple evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment.
View Article and Find Full Text PDFAnti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma.
View Article and Find Full Text PDFLiver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure.
View Article and Find Full Text PDFHepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21.
View Article and Find Full Text PDFSenescence has been implicated as an important mechanism of tumour suppression in a number of human malignancies, including colorectal cancer (CRC). However, we still have a relatively poor understanding of how the underlying mutations that occur in cancer cause senescence and its relevance in vivo. The Apc gene is mutated in approximately 80% of CRC as the initiating event, but rarely elsewhere.
View Article and Find Full Text PDFInactivation of the Apc gene is recognized as the key early event in the development of sporadic colorectal cancer (CRC), where its loss leads to constitutive activation of β-catenin/T-cell factor 4 signaling and hence transcription of Wnt target genes such as c-Myc. Our and other previous studies have shown that although cyclin D1 is required for adenoma formation, it is not immediately upregulated following Apc loss within the intestine, suggesting that proliferation following acute Apc loss may be dependent on another D-type cyclin. In this study, we investigated the expression and functional relevance of cyclin D2 following Apc loss in the intestinal epithelium.
View Article and Find Full Text PDFOncogenic mutations in the K-ras gene occur in approximately 50% of human colorectal cancers. However, the precise role that K-ras oncogenes play in tumor formation is still unclear. To address this issue, we have conditionally expressed an oncogenic K-ras(V12) allele in the small intestine of adult mice either alone or in the context of Apc deficiency.
View Article and Find Full Text PDFInhibition of the mutationally activated Wnt cascade in colorectal cancer cell lines induces a rapid G1 arrest and subsequent differentiation. This arrest can be overcome by maintaining expression of a single Tcf4 target gene, the proto-oncogene c-Myc. Since colorectal cancer cells share many molecular characteristics with proliferative crypt progenitors, we have assessed the physiological role of c-Myc in adult crypts by conditional gene deletion.
View Article and Find Full Text PDF