Background: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility.
Methods: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences.
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass.
View Article and Find Full Text PDFAging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms.
View Article and Find Full Text PDFEpidemiological studies have established that exposure to tungsten increases the risk of developing cardiovascular diseases. However, no studies have investigated how tungsten affects cardiac function or the development of cardiovascular disease. Inhalation of tungsten particulates is relevant in occupational settings, and inhalation of particulate matter has a known causative role in driving cardiovascular disease.
View Article and Find Full Text PDFChronic arsenic exposures via the consumption of contaminated drinking water are clearly associated with many deleterious health outcomes, including anemia. Following exposure, trivalent inorganic arsenic (As) is methylated through a series of arsenic (+III oxidation state) methyltransferase (As3MT)-dependent reactions, resulting in the production of several intermediates with greater toxicity than the parent inorganic arsenicals. The extent to which inorganic vs.
View Article and Find Full Text PDFTungsten is an emerging contaminant in the environment. Research has demonstrated that humans are exposed to high levels of tungsten in certain settings, primarily due to increased use of tungsten in industrial applications. However, our understanding of the potential human health risks of tungsten exposure is still limited.
View Article and Find Full Text PDFArsenic exposure is correlated with atherosclerosis in epidemiological studies and in animal models. We have previously shown that arsenic exposure enhanced the atherosclerotic plaque size, increased the plaque lipid content, and decreased the plaque smooth muscle cell and collagen contents in the apolipoprotein E knockout (apoE-/-) mice. However, the percentage of plaque-resident macrophages, the primary drivers of atherosclerosis remained unchanged.
View Article and Find Full Text PDFToxicol Appl Pharmacol
November 2022
Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination.
View Article and Find Full Text PDFArsenic exposure produces significant hematotoxicity in vitro and in vivo. Our previous work shows that arsenic (in the form of arsenite, AsIII) interacts with the zinc finger domains of GATA-1, inhibiting the function of this critical transcription factor, and resulting in the suppression of erythropoiesis. In addition to GATA-1, GATA-2 also plays a key role in the regulation of hematopoiesis.
View Article and Find Full Text PDFInterstitial fluid (ISF) bathes the cells and tissues and is in constant exchange with blood. As an exchange medium for waste, nutrients, exosomes, and signaling molecules, ISF is recognized as a plentiful source of biomolecules. Many basic and pre-clinical small animal studies could benefit from an inexpensive and efficient technique that allows for the in vivo extraction of ISF for the subsequent quantification of molecules in the interstitial space.
View Article and Find Full Text PDFArsenic exposure poses numerous threats to human health. Our previous work in mice has shown that arsenic causes anemia by inhibiting erythropoiesis. However, the impacts of arsenic exposure on human erythropoiesis remain largely unclear.
View Article and Find Full Text PDFInhalation of tungsten particulates is a relevant route of exposure in occupational and military settings. Exposure to tungsten alloys is associated with increased incidence of lung pathologies, including interstitial lung disease and cancer. We have demonstrated, oral exposure to soluble tungsten enhances breast cancer metastasis to the lungs through changes in the surrounding microenvironment.
View Article and Find Full Text PDFStrong epidemiological evidence demonstrates an association between chronic arsenic exposure and anemia. We recently found that As impairs erythropoiesis by disrupting the function of GATA-1; however the downstream pathways impacted by the loss of GATA-1 function have not been evaluated. Additionally, our previous findings indicate that the predominant arsenical in the bone marrow of mice exposed to As in their drinking water for 30 days was MMA, but the impacts of this arsenical on erythorpoisis also remain largely unknown.
View Article and Find Full Text PDFBackground: Epidemiologic studies indicate that early life arsenic exposures are linked to an increased risk of cardiovascular diseases. Different oxidation and methylation states of arsenic exist in the environment and are formed via the action of arsenic ( oxidation state) methyltransferase (As3MT). Methylated arsenicals are pro-atherogenic postnatally, but pre- and perinatal effects are unclear.
View Article and Find Full Text PDFAnemia is a hematological disorder that adversely affects the health of millions of people worldwide. Although many variables influence the development and exacerbation of anemia, one major contributing factor is the impairment of erythropoiesis. Normal erythropoiesis is highly regulated by the zinc finger transcription factor GATA-1.
View Article and Find Full Text PDFTungsten is a naturally occurring metal that is increasingly used in industry and medical devices, and is labeled as an emerging environmental contaminant. Like many metals, tungsten accumulates in bone. Our previous data indicate that tungsten decreases differentiation of osteoblasts, bone-forming cells.
View Article and Find Full Text PDFHuman exposures to environmental metals, including uranium (U) and arsenic (As) are a global public health concern. Chronic exposures to U and As are linked to many adverse health effects including, immune suppression and autoimmunity. The gastrointestinal (GI) tract is home to many immune cells vital in the maintenance of systemic immune health.
View Article and Find Full Text PDFB lymphocytes, or B cells, are important players in immunity that produce antigen-specific immunoglobulins. As a result, they are involved in various immune-linked pathologies. To better understand, prevent, or treat B cell-associated disease and immunotoxicity, we developed an in vitro assay to model early murine B cell differentiation within the bone marrow.
View Article and Find Full Text PDFHistorical uranium (U) mining in the Southwestern United States resulted in significant environmental contamination throughout this region and presents a significant risk of chronic metal exposure and toxicity for communities living in close proximity to mine waste sites. Uranium exposure is associated with numerous deleterious health effects including immune dysfunction; however, its effects on the immune system have yet to be fully characterized. We recently published that drinking water exposure to U, in the form of uranyl acetate (UA), results in low overall tissue retention of U (<0.
View Article and Find Full Text PDFTungsten is an emerging environmental toxicant associated with several pediatric leukemia clusters, although a causal association has not been established. Our previous work demonstrated that tungsten exposure resulted in an accumulation of pre-B cells in the bone marrow, the same cell type that accumulates in pediatric acute lymphoblastic leukemia (ALL). To better understand the relevant molecular mechanisms, we performed RNA-sequencing on flow sorted pre-B cells from control and tungsten-exposed mice.
View Article and Find Full Text PDFHigh levels of uranium (U) exist in soil, water, and air in the Southwestern United States due, in part, to waste generated from more than 160,000 abandoned hard rock mines located in this region. As a result, many people living in this region are chronically exposed to U at levels that have been linked to detrimental health outcomes. In an effort to establish a relevant in vivo mouse model for future U immunotoxicity studies, we evaluated the tissue distribution of U in immune organs; blood, bone marrow, spleen, and thymus, as well as femur bones, kidneys, and liver, following a 60-d drinking water exposure to uranyl acetate (UA) in male and female C57BL/6J mice.
View Article and Find Full Text PDFPeroxisomes are a critical rheostat of reactive oxygen species (ROS), yet their role in drug sensitivity and resistance remains unexplored. Gene expression analysis of clinical lymphoma samples suggests that peroxisomes are involved in mediating drug resistance to the histone deacetylase inhibitor (HDACi) Vorinostat (Vor), which promotes ROS-mediated apoptosis. Vor augments peroxisome numbers in cultured lymphoma cells, concomitant with increased levels of peroxisomal proteins PEX3, PEX11B, and PMP70.
View Article and Find Full Text PDFBackground: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined.
Objectives: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis.
Organotins are industrial chemicals and agricultural pesticides, and they contaminate both outdoor and indoor environments. Organotins are detectable in human sera at biologically active concentrations and are immuno-and neuro-toxicants. Triphenyltin, tributyltin (TBT) and dibutyltin activate peroxisome proliferator-activated receptor γ in bone marrow multipotent mesenchymal stromal cells and promote adipogenesis.
View Article and Find Full Text PDFTyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression.
View Article and Find Full Text PDF