Kidney fibrosis is one of the main pathological findings of progressive chronic kidney disease (CKD) although the pathogenesis of renal scar formation remains incompletely explained. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix (ECM) and intracellular signaling pathways, is involved in several pathophysiological processes during renal damage. However, ILK contribution in the CKD progress remains to be fully elucidated.
View Article and Find Full Text PDFBackground: Patients with chronic kidney disease present with an accumulation of uraemic toxins, which have been identified as pathogenic agents associated with cardiovascular mortality, which is very high is this patient group. A phenomenon common to the progressive renal dysfunction and associated vascular damage, is the abnormal accumulation of extracellular matrix (ECM) proteins in the renal or vascular structures.
Objective: To determine the contribution of uraemia or the uraemic toxins to the production of cytokinins and ECM in aortas of uraemic animals or human aortic smooth muscle cells (HASMCs).
Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
September 2017
Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis.
View Article and Find Full Text PDFThe development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment.
View Article and Find Full Text PDFThe coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand.
View Article and Find Full Text PDFKey Points: Patients with chronic kidney disease have a higher risk of developing cardiovascular diseases than the general population. Their vascular endothelium is dysfunctional, among other things, because it is permanently exposed to uraemic toxins, several of which have poor clearance by conventional dialysis. Recent studies have demonstrated the important role of integrin-linked kinase (ILK) in the maintenance of endothelial integrity and in this study we investigate the involvement of ILK in the mechanism underlying vascular endothelial damage that occurs in uraemia.
View Article and Find Full Text PDFBackground: Biobank certification ISO 9001:2008 aims to improve the management of processes performed. This has two objectives: customer satisfaction and continuous improvement. This paper presents the impact of certification ISO 9001:2008 on the sample transfer process in a Spanish biobank specialising in kidney patient samples.
View Article and Find Full Text PDFRenal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor.
View Article and Find Full Text PDFBackground: The creation of the Biobank, a resource pertaining to the Spanish Renal Research Network (REDinREN) promotes advances in clinical research on kidney disease in Spain. The Biobank's aims are to generate an archive of clinical samples and associated data, furnish those samples to research teams, and coordinate with European biobanks.
Method: Applicable legislation had to be complied with in order to launch the Biobank project (Biomedical Research Law, Data Protection Law and Biological Sample Transport Regulations).
Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter.
View Article and Find Full Text PDFThe nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences.
View Article and Find Full Text PDF