Ryegrass is one such cereal that has been underutilized in human nutrition despite its high nutritional and functional value due to the presence of phytochemicals and dietary fibers. Exploiting ryegrass for human consumption is an exciting option, especially for countries that do not produce wheat, as it is easily adaptable and overgrows, making it economically viable. This study evaluated the nutritional content of γ-aminobutyric acid and bioactive compounds (total soluble phenolic compounds) and the physicochemical and technological properties of partially substituting maize flour (MF) with sprouted whole ryegrass flour (SR) in developing extrusion-cooked breakfast cereals.
View Article and Find Full Text PDFThe tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile and physicochemical properties of corn extrudates as influenced by the complete or partial replacement by sprouted quinoa ( Willd) and cañihua ( Aellen) were investigated. A simplex centroid mixture design was used to study the effects of formulation on nutritional and physicochemical properties of extrudates, and a desirability function was applied to identify the optimal ingredient ratio in flour blends to achieve desired nutritional, texture and color goals.
View Article and Find Full Text PDFBioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms.
View Article and Find Full Text PDF