Semiconductor nanowires offer a versatile platform for the fabrication of new nanoelectronic and nanophotonic devices. These devices will require a high level of control of the nanowire position in relation to both other components of the device and to other nanowires. We demonstrate unprecedented control of the position of InAs nanowires using selective-area vapor-liquid-solid epitaxy (VLS) on an InP ridge template.
View Article and Find Full Text PDFA comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO(2) mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate.
View Article and Find Full Text PDF