Oculomotor tasks generate a potential wealth of behavioural biomarkers for neurodegenerative diseases. Overlap between oculomotor and disease-impaired circuitry reveals the location and severity of disease processes via saccade parameters measured from eye movement tasks such as prosaccade and antisaccade. Existing studies typically examine few saccade parameters in single diseases, using multiple separate neuropsychological test scores to relate oculomotor behaviour to cognition; however, this approach produces inconsistent, ungeneralizable results and fails to consider the cognitive heterogeneity of these diseases.
View Article and Find Full Text PDFAs large research initiatives designed to generate big data on clinical cohorts become more common, there is an increasing need to establish standard quality assurance (QA; preventing errors) and quality control (QC; identifying and correcting errors) procedures for critical outcome measures. The present article describes the QA and QC approach developed and implemented for the neuropsychology data collected as part of the Ontario Neurodegenerative Disease Research Initiative study. We report on the efficacy of our approach and provide data quality metrics.
View Article and Find Full Text PDFBackground: Large and complex studies are now routine, and quality assurance and quality control (QC) procedures ensure reliable results and conclusions. Standard procedures may comprise manual verification and double entry, but these labour-intensive methods often leave errors undetected. Outlier detection uses a data-driven approach to identify patterns exhibited by the majority of the data and highlights data points that deviate from these patterns.
View Article and Find Full Text PDF