Hypothyroidism exerts deleterious effects on immunity, but the precise role of the hypothalamic-pituitary-thyroid (HPT) axis in immunoregulatory and tolerogenic programs is barely understood. Here, we investigated the mechanisms underlying hypothyroid-related immunosuppression by examining the regulatory role of components of the HPT axis. We first analyzed lymphocyte activity in mice overexpressing the TRH gene (Tg-Trh).
View Article and Find Full Text PDFBackground: Graves' disease is an autoimmune disorder characterised by excessive production of thyroid hormones, which induces increased cellular metabolism in most tissues and increased production of reactive oxygen species (ROS). The aim of this work was to analyse the effect of ROS on cell viability and the expression of catalase (CAT), glutathione peroxidase-1 (GPx-1), superoxide dismutase (SOD-1) and DNA methyltransferase-1 (DNMT-1) in peripheral blood mononuclear cells (PBMC) from patients with newly diagnosed Graves' disease or treated with methimazole.
Patients And Methods: For this study, women patients with newly diagnosed Graves' disease (n=18), treated with methimazole (n=6) and healthy subjects (n=15) were recruited.
The patient's hormonal context plays a crucial role in the outcome of cancer. However, the association between thyroid disease and breast cancer risk remains unclear. We evaluated the effect of thyroid status on breast cancer growth and dissemination in an immunocompetent mouse model.
View Article and Find Full Text PDFPurpose: Hypothyroidism has been shown to induce immunosuppression and both the thyroid status and immunity are affected by zinc deficiency. However, the impact of hypothyroidism on zinc metabolism and its possible relationship with the immune status has not yet been deeply explored. Here, our aim was to study whether hypothyroidism may alter zinc metabolism and thus lead to the impairment of T lymphocyte activity.
View Article and Find Full Text PDFThyroid hormones (THs) exert a broad range of actions on development, growth, and cell differentiation by both genomic and nongenomic mechanisms. THs regulate lymphocyte function, but the participation of nongenomic actions is still unknown. Here the contribution of both genomic and nongenomic effects on TH-induced division of T cells was studied by using free and noncell permeable THs coupled to agarose (TH-ag).
View Article and Find Full Text PDFBackground: Stress alters the neuroendocrine system, immunity, and cancer. Although the classic stress hormones are glucocorticoids and catecholamines, thyroid hormones have also been related to stress. We recently reported that chronic restraint stress impairs T-cell mediated immunity and enhances tumor growth in mice.
View Article and Find Full Text PDFAutoimmune thyroid diseases (AITD) are the most common organ-specific autoimmune disorders affecting approximately 5% of the overall population. An aberrant interaction between abnormal thyrocytes, abnormal antigen-presenting cells and abnormal T cells forms the basis for the atypical autoimmune reaction targeting thyroid antigens. It was proposed that nongenetic (environmental and hormonal) factors play a crucial etiological role in AITD development, through altering immune-endocrine interactions.
View Article and Find Full Text PDFThyroid hormones play critical roles in differentiation, growth and metabolism, but their participation in immune system regulation has not been completely elucidated. Modulation of in vivo thyroid status was used to carry out an integrative analysis of the role of the hypothalamus-pituitary-thyroid (HPT) axis in T and B lymphocyte activity. The participation of the protein kinase C (PKC) signaling pathway and the release of some cytokines upon antigenic stimulation were analyzed.
View Article and Find Full Text PDFObjective: The aim of this work was to analyze beta-adrenergic receptor (betaAR) regulation of T-lymphocyte proliferation in mice according to different thyroid hormone statuses.
Methods: T cells from eu-, hypo- (by propylthiouracil treatment) and hyperthyroid (by thyroxine, T4 administration) mice were purified and specific radioligand binding assays were performed. The effects of the beta-agonist isoproterenol (ISO) on intracellular levels of cyclic AMP (cAMP) were determined.
Protein kinase C (PKC) is critical for T lymphocyte activation and proliferation, while nitric oxide synthase (NOS) may function both as an activator or inhibitor of T cell apoptosis. Both enzymatic activities were studied in T lymphoma cells in comparison to normal and activated T lymphocytes. Here we show a higher translocation of PKC in BW5147 lymphoma cells than in mitogen-stimulated T lymphocytes.
View Article and Find Full Text PDF