Publications by authors named "Alicia Hegie"

Over 13% of all genes in the Arabidopsis thaliana genome encode for proteins classified as having a completely unknown function, with the function of >30% of the Arabidopsis proteome poorly characterized. Although empirical data in the form of mRNA and proteome profiling experiments suggest that many of these proteins play an important role in different biological processes, their functional characterization remains one of the major challenges in modern biology. To expand the annotation of genes with unknown function involved in the response of Arabidopsis to different environmental stress conditions, we selected 1007 such genes and tested the response of their corresponding homozygous T-DNA insertional mutants to salinity, oxidative, osmotic, heat, cold and hypoxia stresses.

View Article and Find Full Text PDF

Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a key signaling role in plants and are controlled in cells by a complex network of ROS metabolizing enzymes found in several different cellular compartments. To study how different ROS signals, generated in different cellular compartments, are integrated in cells, we generated a double mutant lacking thylakoid ascorbate peroxidase (tylapx) and cytosolic ascorbate peroxidase1 (apx1). Our analysis suggests that two different signals are generated in plants lacking cytosolic APX1 or tylAPX.

View Article and Find Full Text PDF