Publications by authors named "Alicia Che"

Synchronous neuronal activity is a hallmark of the developing mouse primary somatosensory cortex. While the patterns of synchronous neuronal activity in cortical layer 2/3 have been well described, the source of the robust layer 2/3 activity is still unknown. Using a novel microprism preparation and in vivo 2-photon imaging in neonatal mice, we show that synchronous neuronal activity is organized in barrel columns across layers.

View Article and Find Full Text PDF

Unlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.

View Article and Find Full Text PDF

Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses. At the cellular level, psychedelics induce structural neural plasticity, exemplified by the drug-evoked growth and remodeling of dendritic spines in cortical pyramidal cells. A key question is how these cellular modifications map onto cell type-specific circuits to produce psychedelics' behavioral actions.

View Article and Find Full Text PDF

The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species.

View Article and Find Full Text PDF

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus.

View Article and Find Full Text PDF

Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation.

View Article and Find Full Text PDF

Environmentally appropriate social behavior is critical for survival across the lifespan. To support this flexible behavior, the brain must rapidly perform numerous computations taking into account sensation, memory, motor-control, and many other systems. Further complicating this process, individuals must perform distinct social behaviors adapted to the unique demands of each developmental stage; indeed, the social behaviors of the newborn would not be appropriate in adulthood and vice versa.

View Article and Find Full Text PDF
Article Synopsis
  • - Dysfunction in GABAergic circuits is linked to neurodevelopmental disorders, and this study explores how the gene Gabrb3 impacts brain circuit assembly in relation to conditions like autism spectrum disorder (ASD) and Angelman syndrome (AS).
  • - The research finds that deleting Gabrb3 in mice leads to fewer inhibitory synapses, increased synchrony in local networks, and greater functional connectivity between certain groups of brain neurons, as well as heightened responses to touch in newborns.
  • - Furthermore, analysis of human data reveals that the expression of GABRB3 is associated with unusual brain connectivity patterns observed in individuals with ASD, emphasizing the gene's role in developing sensory processing circuits.
View Article and Find Full Text PDF

Neuronal activity profoundly shapes the maturation of developing neurons. However, technical limitations have hampered the ability to capture the progression of activity patterns in genetically defined neuronal populations. This task is particularly daunting given the substantial diversity of pyramidal cells and interneurons in the neocortex.

View Article and Find Full Text PDF

Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional.

View Article and Find Full Text PDF
Article Synopsis
  • During neonatal development, sensory cortices create spontaneous activity influenced by sensory experience and intrinsic factors, but the exact role of this activity in forming neuronal circuits remains unclear.
  • A study using longitudinal calcium imaging in mouse pups reveals that by postnatal day 7, distinct functional assemblies of interneurons and pyramidal cells are present in the somatosensory cortex.
  • Reducing GABA release disrupts this functional organization, leading to increased survival of certain interneurons, highlighting the importance of immature MGE-derived interneurons in shaping GABA-driven activity patterns in developing cortical networks.*
View Article and Find Full Text PDF

The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring, and programmed cell-death. Despite their importance for the emergence of sensory experience and the role of activity in their integration into cortical networks, the collective dynamics of GABAergic neurons during that neonatal period remain unknown.

View Article and Find Full Text PDF

The neonatal mammal faces an array of sensory stimuli when diverse neuronal types have yet to form sensory maps. How these inputs interact with intrinsic neuronal activity to facilitate circuit assembly is not well understood. By using longitudinal calcium imaging in unanesthetized mouse pups, we show that layer I (LI) interneurons, delineated by co-expression of the 5HT3a serotonin receptor (5HT3aR) and reelin (Re), display spontaneous calcium transients with the highest degree of synchrony among cell types present in the superficial barrel cortex at postnatal day 6 (P6).

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are using a tool called CRISPR/Cas9 to change specific genes in brain cells of developing animals and see what happens to those cells later.
  • They found that changing certain genes, like PTEN and NF1, can lead to problems in brain cell growth and can even cause brain tumors.
  • This research helps us understand how changes in brain cells can lead to diseases and could help in studying human brain conditions.
View Article and Find Full Text PDF

Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex.

View Article and Find Full Text PDF

Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner.

View Article and Find Full Text PDF

Background: Variants in dyslexia-associated genes, including DCDC2, have been linked to altered neocortical activation, suggesting that dyslexia associated genes might play as yet unspecified roles in neuronal physiology.

Methods: Whole-cell patch clamp recordings were used to compare the electrophysiological properties of regular spiking pyramidal neurons of neocortex in Dcdc2 knockout (KO) and wild-type mice. Ribonucleic acid sequencing and reverse transcriptase polymerase chain reaction were performed to identify and characterize changes in gene expression in Dcdc2 KOs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1evpqcif3ilm7mdbc7cmekle6avbujdj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once