Publications by authors named "Alice dos Santos Rosa"

The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CL and PL proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both and analyses. The results uncovered notable inhibitory effects, with and standing out, while proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system.

View Article and Find Full Text PDF

SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (M) and the papain-like protease (PL) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe) which is an archetypal model of diselenides and a renowned potential therapeutic agent.

View Article and Find Full Text PDF

Leishmaniasis is a neglected broad clinical spectrum disease caused by protozoa of the genus Leishmania, which affect millions of people annually in the world and the treatment has severe side effects and resistant strains have been reported. Mesoionic salts are a subclass of the betaine group with extensive biological activity such as microbicide and anti-inflammatory In this work, we analyze the cytotoxic effects of mesoionic salts, 4-phenyl-5-(X-phenyl)-1,3,4-thiadiazolium-2-phenylamine chloride (X = 4 Cl; 3,4 diCl and 3,4 diF), on Leishmania amazonensis in vitro. Initially, Mesoionic salts toxicity were evaluated by XTT assay on L.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases.

View Article and Find Full Text PDF

Supplementation with olive and fish oils reverses the effects of stress on behavioral activities and adrenal activation. However, previous studies have not shown whether supplementation with olive and fish oil could inhibit the effects of stress on cutaneous wound healing. Thus, this study investigated the effects of supplementation with fish or olive oil on cutaneous healing in stressed mice.

View Article and Find Full Text PDF