Background And Purpose: RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR.
View Article and Find Full Text PDFMYC regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. MYC also controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a potential target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. In this report, we studied whether MYC binds to DSB repair gene promoters and modulates cell survival in response to DNA-damaging agents.
View Article and Find Full Text PDFBackground And Purpose: Intratumoral hypoxia has been correlated with poor clinical outcome in prostate cancer. Prostate cancer cells can be genetically unstable and have altered DNA repair. We, therefore, hypothesized that the expression of DNA double-strand break (DNA-dsb) repair genes in normal and malignant prostate cultures can be altered under hypoxic conditions.
View Article and Find Full Text PDF