Publications by authors named "Alice Vallentin"

Translationally controlled tumor protein (Tpt1/TCTP) is a multi-functional cytosolic protein whose cellular levels are finely tuned. TCTP regulates protein behavior by favoring stabilization of protein partners or on the contrary by promoting degradation of others. TCTP has been shown to be transcriptionally and translationally regulated, but much less is known about its degradation process.

View Article and Find Full Text PDF

ABCB6, a member of the adenosine triphosphate-binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells.

View Article and Find Full Text PDF

Angiogenesis is critical in the progression of prostate cancer. However, the interplay between the proliferation kinetics of tumor endothelial cells (angiogenesis) and tumor cells has not been investigated. Also, protein kinase C (PKC) regulates various aspects of tumor cell growth, but its role in prostate cancer has not been investigated in detail.

View Article and Find Full Text PDF

Cardiovascular disease is the leading cause of death in the United States. Therefore, identifying therapeutic targets is a major focus of current research. Protein kinase C (PKC), a family of serine/threonine kinases, has been identified as playing a role in many of the pathologies of heart disease.

View Article and Find Full Text PDF

The cellular response to excessive endoplasmic reticulum (ER) stress includes the activation of signaling pathways, which lead to apoptotic cell death. Here we show that treatment of cultured cardiac myocytes with tunicamycin, an agent that induces ER stress, causes the rapid translocation of deltaPKC to the ER. We further demonstrate that inhibition of deltaPKC using the deltaPKC-specific antagonist peptide, deltaV1-1, reduces tunicamycin-induced apoptotic cell death, and inhibits expression of specific ER stress response markers such as CHOP, GRP78 and phosphorylation of JNK.

View Article and Find Full Text PDF

We have previously shown that domains involved in binding of protein kinase C (PKC) isozymes to their respective anchoring proteins (RACKs) and short peptides derived from these domains are PKC isozyme-selective antagonists. We also identified PKC isozyme-selective agonists, named psiRACK peptides, derived from a sequence within each PKC with high homology to its respective RACK. We noted that all the psiRACK sequences within each PKC isozyme have at least one non-homologous amino acid difference from their corresponding RACK that constitutes a charge change.

View Article and Find Full Text PDF

RBCK1 (RBCC protein interacting with PKC 1) has originally been identified as a protein kinase CbetaI (PKCbetaI)-binding partner by a two-hybrid screen and as one of the gene transcripts that increases during adult cardiac hypertrophy. To address whether RBCK1 and PKCbetaI functions are interconnected, we used cultured neonatal myocytes where we previously found that the activity of PKCbetaI is required for an increase in cell size, also called hypertrophy. In this study, we showed that acute treatment of cardiac myocytes with phenylephrine, a prohypertrophic stimulant, transiently increased the association of RBCK1 with PKCbetaI within 1 min.

View Article and Find Full Text PDF

Protein kinase C (PKC) has been implicated in the control of intercellular adhesion. Our previous observation demonstrating that activated PKC alpha (PKCalpha is selectively targeted to cell-cell contacts of pituitary GH3B6 cells supports these findings. The relevance of this observation is further strengthened by the present data establishing that this targeting selectivity also occurs in the pituitary gland.

View Article and Find Full Text PDF

In contrast with protein kinase Calpha (PKCalpha) and PKCepsilon, which are better known for promoting cell survival, PKCdelta is known for its pro-apoptotic function, which is exerted mainly through a caspase-3-dependent proteolytic activation pathway. In the present study, we used the rat GH3B6 pituitary adenoma cell line to show that PKCalpha and PKCepsilon are activated and relocalized together with PKCdelta when apoptosis is induced by a genotoxic stress. Proteolytic activation is a crucial step used by the three isoforms since: (1) the catalytic domains of the PKCalpha, PKCepsilon or PKCdelta isoforms (CDalpha, CDepsilon and CDdelta respectively) accumulated, and this accumulation was dependent on the activity of both calpain and caspase; and (2) transient expression of CDalpha, CDepsilon or CDdelta sufficed to induce apoptosis.

View Article and Find Full Text PDF