Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine CrTe thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional CrTe epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry.
View Article and Find Full Text PDFTypical methods to holographically encode arbitrary wavefronts assume the hologram medium only applies either phase shifts or amplitude attenuation to the wavefront. In many cases, phase cannot be introduced to the wavefront without also affecting the amplitude. Here we show how to encode an arbitrary wavefront into an off-axis transmission hologram that returns the exact desired arbitrary wavefunction in a diffracted beam for phase-only, amplitude-only, or mixed phase and amplitude holograms with any periodic groove profile.
View Article and Find Full Text PDF