Cancer adhesion to the mesothelium is critical for peritoneal metastasis, but how metastatic cells adapt to the biomechanical microenvironment remains unclear. Our study demonstrates that highly metastatic (HM), but not non-metastatic, ovarian cancer cells selectively activate the peritoneal mesothelium. HM cells exert a stronger adhesive force on mesothelial cells via P-cadherin, an adhesion molecule abundant in late-stage tumors.
View Article and Find Full Text PDFThe wide application of benzophenones (BPs), such as benzophenone-3 (BP3), as an ingredient in sunscreens, cosmetics, coatings, and plastics, has led to their global contamination in aquatic environments. Using the marine diatom Chaetoceros neogracilis as a model, this study assessed the toxic effects and mechanisms of BP3 and its two major metabolites (BP8 and BP1). The results showed that BP3 exhibited higher toxicity on C.
View Article and Find Full Text PDFHypoxia reprograms cancer stem cells. Nur77, an orphan nuclear receptor, highly expresses and facilitates colorectal cancer (CRC) stemness and metastasis under a hypoxic microenvironment. However, safe and effective small molecules that target Nur77 for CSC depletion remain unexplored.
View Article and Find Full Text PDFA great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known.
View Article and Find Full Text PDFHumans are regularly and continuously exposed to ionizing radiation from both natural and artificial sources. Cumulating evidence shows adverse effects of ionizing radiation on both male and female reproductive systems, including reduction of testis weight and sperm count and reduction of female germ cells and premature ovarian failure. While most of the observed effects were caused by DNA damage and disturbance of DNA repairment, ionizing radiation may also alter DNA methylation, histone, and chromatin modification, leading to epigenetic changes and transgenerational effects.
View Article and Find Full Text PDFOne of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein-Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [Pt(C^N^N)(NHC)]PF (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= -heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.
View Article and Find Full Text PDFAs a result of the hostile microenvironment, metabolic alterations are required to enable the malignant growth of cancer cells. To understand metabolic reprogramming during metastasis, we conducted shotgun proteomic analysis of highly metastatic (HM) and non-metastatic (NM) ovarian cancer cells. The results suggest that the genes involved in fatty-acid (FA) metabolism are upregulated, with consequent increases of phospholipids with relatively short FA chains (myristic acid, MA) in HM cells.
View Article and Find Full Text PDFMolecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K/H transport on the mitochondrial and lysosomal membranes in living cells.
View Article and Find Full Text PDF: Glycogen synthase kinase-3β (GSK-3β) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3β can confer tumor growth. However, the expression and function of GSK-3β in hepatocellular carcinoma (HCC) remain largely unexplored.
View Article and Find Full Text PDFGinseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus in the family that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects.
View Article and Find Full Text PDFAlthough invasive epithelial ovarian cancer (IOC) and low malignant potential ovarian tumour (LMP) are similar, they are associated with different outcomes and treatment strategies. The current accuracy in distinguishing these diseases is unsatisfactory, leading to delays or unnecessary treatments. We compared the molecular signature of IOC and LMP cases by analysing their transcriptomic data and re-clustered them according to these data rather than the pathological dissection.
View Article and Find Full Text PDFBackground: Angiotensin II (ANGII) and its receptor (AGTR1) have been proposed as significant contributors to metastasis in multiple cancers. Further, high AGTR1 levels are associated with poor epithelial ovarian cancer (EOC) outcomes. However, the mechanistic basis for these effects is unknown.
View Article and Find Full Text PDFHypoxia is a pressing environmental problem in both marine and freshwater ecosystems globally, and this problem will be further exacerbated by global warming in the coming decades. Recently, we reported that hypoxia can cause transgenerational impairment of sperm quality and quantity in fish (in F0, F1, and F2 generations) through DNA methylome modifications. Here, we provide evidence that female fish ( Oryzias melastigma) exposed to hypoxia exhibit reproductive impairments (follicle atresia and retarded oocyte development), leading to a drastic reduction in hatching success in the F2 generation of the transgenerational group, although they have never been exposed to hypoxia.
View Article and Find Full Text PDFPresence of Met receptor tyrosine kinase in the nucleus of cells has been reported. However, the functions of Met which expresses in the nucleus (nMet) remain elusive. In this study, we found that nMet was increased in 89% of HCC tumorous tissues when compared with the corresponding non-tumorous liver tissues.
View Article and Find Full Text PDFZearalenone (ZEA) has long been recognized as a xenoestrogen, while the endocrine disrupting effects of aflatoxin B1 (AFB1) have been identified recently. Due to co-occurrence and endocrine disrupting potentials of ZEA and AFB1, it was hypothesized that co-exposure to ZEA and AFB1 might affect breast cancer cell growth. Consequently, the aim of this study was to evaluate the combined effects of ZEA and AFB1 (1nM-100nM) on cell growth and cell cycle progression, using a human breast cancer cell line MCF-7.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2017
Ovarian cancer is the seventh most common cancer in women and the most lethal gynecological cancer, causing over 151,000 deaths worldwide each year. Dysregulated production of endocrine hormones, known to have pluripotent effects on cell function through the activation of receptor signaling pathways, is believed to be a high-risk factor for ovarian cancer. An increasing body of evidence suggests that endocrine G protein-coupled receptors (GPCRs) are involved in the progression and metastasis of ovarian neoplasms.
View Article and Find Full Text PDFWe recently demonstrated that retinoic acid receptor-γ (RARγ) is overexpressed and acts as a tumor promoter in hepatocellular carcinoma (HCC). The oncogenic activity of RARγ is mainly attributed to its physiological interaction with p85α regulatory subunit of PI3K leading to constitutive activation of AKT. Here we report RARγ as a negative regulator of p53 signaling and thus extend the oncogenic potential of RARγ to a new role in controlling the balance between AKT and p53.
View Article and Find Full Text PDFThe adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy.
View Article and Find Full Text PDFChemoresistance is a major clinical problem compromising the successful treatment of cancer. One exciting approach is the eradication of cancer stem/tumor-initiating cells (jointly CSCs), which account for tumor initiation, progression, and drug resistance. Here we show for the first time, with mechanism-based evidence, that ginsenoside-Rb1, a natural saponin isolated from the rhizome of Panax quinquefolius and notoginseng, exhibits potent cytotoxicity on CSCs.
View Article and Find Full Text PDFThe nuclear retinoid X receptor-α (RXRα) plays critical roles in cell homeostasis and in many physiological processes mainly through its transcriptional function. However, an N-terminal truncated form of RXRα, tRXRα, was frequently described in various cancer cells and tumor tissues, thus representing a new promising drug target. We recently demonstrated that triptolide (TR01) could target to the oncogenic activity of tRXRα.
View Article and Find Full Text PDFAn anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)AuCl] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone.
View Article and Find Full Text PDFOvarian cancer is the leading cause of death of all gynecologic tumors, associated with widespread peritoneal dissemination and malignant ascites. Key to this is the ability to form multicellular spheroids (MCS); however, the tumor-specific factors that regulate MCS formation are unclear. p70 S6 kinase (p70S6K), which is a downstream effector of phosphatidylinositol 3-kinase/Akt, is frequently constitutively active in ovarian carcinoma.
View Article and Find Full Text PDF