Publications by authors named "Alice Mija"

This study presents the design and synthesis of bio-composites exhibiting high properties, wherein both the matrix and filler originate from wood biomass. Notably, no additional hardener compounds or treatments/modifications of the lignocellulosic filler were employed. Thermosetting materials were developed by homopolymerizing a bio-based aromatic epoxy monomer, the resorcinol diglycidyl ether (RDGE), with different percentages, from 1 wt% to 30 wt% of natural wood processing side-product, such as spruce bark powder (SB), which was used as such without additional treatments and modifications.

View Article and Find Full Text PDF

Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4.

View Article and Find Full Text PDF

The non-toxic and biodegradable nature of chitosan makes it a valuable resource offering promising opportunities in the development of bio-based materials with enhanced mechanical and thermal properties. In this work, the combination of epoxidized linseed oil, oxalic or citric acids, and chitosan (CHI) as a curing accelerator presents an attractive strategy to create bio-based and sustainable thermosetting materials. This article aims to provide a comprehensive exploration of the systems reactivities, characteristics, and performance evaluation of the designed bio-thermosets.

View Article and Find Full Text PDF

The present manuscript describes the use of natural fibers as natural and sustainable reinforcement agents for advanced bio-based composite materials for strategic sectors, for example, the construction sector. The characterization carried out shows the potential of both natural hemp and linseed fibers, as well as their composites, which can be used as insulation materials because their thermal conductivity properties can be compared with those observed in typical construction materials such as pine wood. Nevertheless, linseed composites show better mechanical performance and hemp has higher fire resistance.

View Article and Find Full Text PDF

There is an imperative need to find sustainable ways to produce bisphenol A free, high performance thermosets for specific applications such as the space or aerospace areas. In this study, an aromatic tris epoxide, the tris(4-hydroxyphenyl)methane triglycidyl ether (THPMTGE), was selected to generate high crosslinked networks by its copolymerization with anhydrides. Indeed, the prepared thermosets show a gel content () ~99.

View Article and Find Full Text PDF

Chitosan is a valuable biopolymer with a great potential to be used in the design of sustainable materials. Its use typically requires converting the solid powder into a quite dilute solution by disrupting the hydrogen bonding between primary amine and hydroxyl groups. In this work we show that chitosan can be reacted with a tris-aromatic tris-epoxy monomer, generating thermoset materials.

View Article and Find Full Text PDF

(R)-Limonene, a renewable terpene, and its epoxidized derivatives, i. e. limonene epoxides, have prompted growing attention over the last decade as building blocks for the synthesis of biobased monomers and polymers.

View Article and Find Full Text PDF

Humins have already shown their potential as thermosetting resins to produce crosslinked networks and composites, with a large variety of properties depending on the used macromolecular approach. Our group has shown that a very interesting class of materials with tunable flexibility can be made by humins co-polymerization with glycerol diglycidyl ether (GDE). To create a clearer picture on structure-reactivity-properties-application interdependent relationship, a principal component analysis (PCA) was applied on several humins batches.

View Article and Find Full Text PDF

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2'-dithiodibenzoic acid (DTBA) and 3,3'-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners.

View Article and Find Full Text PDF

The design of polymers from renewable resources with recycling potential comes from economic and environmental problems. This work focused on the impact of disulphide bonds in the dicarboxylic acids reactions with three epoxidized vegetable oils (EVOs). For the first time, the comparison between aromatic vs.

View Article and Find Full Text PDF

Thiswork is focused on the development of sustainable biocomposites based on epoxy bioresin reinforced with a natural porous material (hydrochar, HC) that is the product of spruce bark wastes subjected to hydrothermal decomposition. To identify the influence of hydrochar as a reinforcing material on the designed composites, seven formulations were prepared and tested. An aromatic epoxy monomer derived from wood biomass was used to generate the polymeric matrix, and the formulations were prepared varying the filler concentration from 0 to 30 wt %.

View Article and Find Full Text PDF

Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations. In this context, this study focuses on the valorization of vegetable oils (VOs) into thermoset materials by using (i) epoxidation of the VOs through the "double bonds to epoxy" synthetic route and (ii) synthesis of crosslinked homopolymers by UV or hardener-free thermal curing processes. A thorough identification, selection and physico-chemical characterization of non-edible or non-valuated natural vegetable oils were performed.

View Article and Find Full Text PDF

The preparation of thermosets based on epoxidized vegetable oils (EVOs) involved a peculiar attention in recent years; however, most of them cannot be recycled once cross-linked. In the present work, epoxy thermosetting resins like-vitrimers with dynamic disulfide covalent bonds were prepared by copolymerizing twelve EVOs with 2,2'-dithiodibenzoic acid, as hardener. Here, we show for the first time the reprocessability, repairability, and recyclability properties of EVOs thermosets.

View Article and Find Full Text PDF

The end-of-life of thermoset materials is a real issue that confronts our society, and the strategy of introducing dynamic reversible bonds can be a sustainable solution to overcome this problem. This study shows an efficient way to produce biobased and recyclable thermosets, for a circular use. To reduce the production costs linked to energy and duration, an improved curing process is proposed by combining aromatic and aliphatic diacid hardeners containing dynamic S-S bonds.

View Article and Find Full Text PDF

This work reports for the first time the copolymerization studies of 11 newly synthesized epoxidized vegetable oils (EVOs) that reacted with a disulfide-based aromatic dicarboxylic acid (DCA) to produce thermoset materials with recyclability properties. These new EVOs' reactivity and properties were compared with those of the two commercial references: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO). The structure-reactivity correlation is proposed by differential scanning calorimetry (DSC) analysis, corroborating the epoxy content of EVO monomers, the initiator effect, the copolymerization reaction enthalpy, and the temperature range.

View Article and Find Full Text PDF

Bio-based thermosetting resins were synthesized from a ternary composition: humins; epoxidized linseed oil (ELO); and an industrial hardener, Capcure3-800 (CAP). Humins are in a focused attention in the last years, as biorefinery by-product, therefore its valorization through materials design is very important. Here we present a structural study of terpolymerization of humins/ ELO/CAP.

View Article and Find Full Text PDF

The development of sustainable materials by employing natural and nontoxic resources has been attracting much attention over the previous years. In this work, we discuss for the first time the chemical combination between resorcinol diglycidyl ether (RDGE), an aromatic biobased thermosetting monomer, and polyhydroxybutyrate (PHB), a bioderived and biodegradable thermoplastic polyester. By this combination, we aimed to associate the high thermal stability of RDGE with a toughening effect by the aliphatic chains of PHB.

View Article and Find Full Text PDF

Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications.

View Article and Find Full Text PDF

The combination of eco-respectful epoxy compounds with the humins, a by-product of biomass chemical conversion technologies, allow the obtention of materials with high added value. In this work, we propose a chemical connection study of humins with two aliphatic bis-epoxides through copolymerization reactions to synthesize sustainable, bio-based thermosets. The mechanism insights for the crosslinking between the epoxides and humins was proposed considering the different functionalities of the humins structure.

View Article and Find Full Text PDF

The need for thermosets from renewable resources is continuously increasing to find eco-friendly alternatives to petroleum-derived materials. Products obtained from biomass have shown to play an important role in this challenge. Here, we present the structural characterization of new biobased thermosets made of humins, a byproduct of lignocellulosic biorefinery, and glycidylated phloroglucinol coming from the biomass phenolic fraction.

View Article and Find Full Text PDF

The last two decades have witnessed a significant growth in using bioderived materials, driven by the necessity of replacing fossil-derived precursors, reducing the fossil fuel consumption, and lowering the global environmental impact. This is possible thanks to the availability of abundant resources from biomasses and the development of optimized technologies based on the principles of sustainability and circular economy. Herein, we report on the synthesis and characterization of new carbohydrate-derived epoxy resins.

View Article and Find Full Text PDF

Poultry feathers, a source of keratin, are a significant side stream from the food industry, for which valorization is essential considering the circular economy aspects. For this, ecofriendly processes are the tools that allow the easy and feasible transformation of the feathers. Deep eutectic solvents (DESs) are generally considered as inexpensive, relatively simple, mild and environmentally friendly solvents which can dissolve proteins from protein-rich biomasses.

View Article and Find Full Text PDF

A new macroporous foam-like material is presented based on autocross-linking humins, an industrial biorefinery byproduct. Humins foams are obtained by a simple heating process, without any pretreatment and with high control of morphology, porosity, and carbon content. Untreated humins have been characterized by GC, ultra-performance liquid chromatography (UPLC), elemental analysis, and FTIR, whereas the mechanism of foaming was elucidated by a combination of thermal and rheological analyses.

View Article and Find Full Text PDF

Two eco-respectful, one-step synthetic routes for the preparation of a bio-based epoxy monomer derived from furan precursors are developed. The diglycidyl ester products are throughly characterized in terms of structure and thermal properties. Gathered results indicate that the two selected approaches allow the preparation of pure, furanic diglycidyl ester, which represents a viable bio-based alternative to its petrochemical aromatic counterpart.

View Article and Find Full Text PDF

The hypothesis made is that thermal resistance of sorghum and miscanthus stem pieces taken at well-defined positions of the stem is simply related to their biochemical composition. For miscanthus, two different genotypes and two internode levels were selected. For each region, the stem was divided into three radial layers.

View Article and Find Full Text PDF