ERα signaling drives proliferation, survival and cancer initiation in the mammary gland. Therefore, it is critical to elucidate mechanisms by which ERα expression is regulated. We show that the tumor suppressor E3 ligase COP1 promotes the degradative polyubiquitination of the microtubule-associated protein HPIP.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC.
View Article and Find Full Text PDFProlonged cell survival occurs through the expression of specific protein isoforms generated by alternate splicing of mRNA precursors in cancer cells. How alternate splicing regulates tumor development and resistance to targeted therapies in cancer remain poorly understood. Here we show that RNF113A, whose loss-of-function causes the X-linked trichothiodystrophy, is overexpressed in lung cancer and protects from Cisplatin-dependent cell death.
View Article and Find Full Text PDFSoil electrical conductivity (EC) maps obtained through proximal soil sensing (i.e., geophysical data) are usually considered to delineate homogeneous site-specific management zones (SSMZ), used in Precision Agriculture to improve crop production.
View Article and Find Full Text PDFZika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG-I-like receptors (RLRs) as upstream sensors of viral RNA.
View Article and Find Full Text PDFSensing of cytoplasmic DNA by cGAS is essential for the initiation of immune responses against several viruses. cGAS also plays important roles in some autoinflammatory and autoimmune diseases and may be involved in immune responses targeting cancer cells. Once activated, cGAS catalyzes the formation of the di-nucleotide 2'-3'-cyclic GMP-AMP (cGAMP), which propagates a signaling cascade leading to the production of type I interferons (IFNs).
View Article and Find Full Text PDFMicroRNAs are important posttranscriptional regulators of gene expression, which have been shown to fine-tune innate immune responses downstream of pattern recognition receptor (PRR) signaling. This study identifies miR-650 as a novel PRR-responsive microRNA that is downregulated upon stimulation of primary human monocyte-derived dendritic cells (MDDCs) with a variety of different microbe-associated molecular patterns. A comprehensive target search combining in silico analysis, transcriptional profiling, and reporter assays reveals that miR-650 regulates several well-known interferon-stimulated genes, including IFIT2 and MXA.
View Article and Find Full Text PDFWe have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity.
View Article and Find Full Text PDFThe identification of DC-derived signals orchestrating activation of Th1 and Th17 immune responses has advanced our understanding on how these inflammatory responses develop. However, whether specific signals delivered by DCs also participate in the regulation of Th2 immune responses remains largely unknown. In this study, we show that administration of antigen-loaded, IL-6-deficient DCs to naïve mice induced an exacerbated Th2 response, characterized by the differentiation of GATA-3-expressing T lymphocytes secreting high levels of IL-4, IL-5, and IL-13.
View Article and Find Full Text PDFImmune responses at the intestinal mucosa must allow for host protection whilst simultaneously avoiding inappropriate inflammation. Although much work has focused on the innate immune functionality of hematopoietic immune cells, non-hematopoietic cell populations - including epithelial and stromal cells - are now recognized as playing a key role in innate defense at this site. In this study we examined the innate immune capacity of primary human intestinal stromal cells (iSCs).
View Article and Find Full Text PDFNOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators.
View Article and Find Full Text PDFSirtuins are a unique class of NAD(+)-dependent deacetylases that regulate diverse biological functions such as aging, metabolism, and stress resistance. Recently, it has been shown that sirtuins may have anti-inflammatory activities by inhibiting proinflammatory transcription factors such as NF-κB. In contrast, we report in this study that pharmacological inhibition of sirtuins dampens adaptive Th2 responses and subsequent allergic inflammation by interfering with lung dendritic cell (DC) function in a mouse model of airway allergy.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, represents an energy sensor able to adapt cellular metabolism in response to nutritional environmental variations. TCR stimulation activates AMPK, a regulatory event that is known to stimulate ATP-producing processes, possibly in anticipation of the increased energetic needs associated with cell division and expression of effector function. Taking advantage of the selective expression of the AMPKalpha1 catalytic subunit in lymphoid cells, we have analyzed the in vitro and in vivo capacity of lymphocytes lacking AMPK activity (AMPKalpha1-KO cells) to respond to metabolic stress and to initiate and sustain an immune response.
View Article and Find Full Text PDF