Meglumine is a methylamino derivative of sorbitol that is an approved drug excipient. Recent preclinical studies suggest that administration of high-dose oral meglumine can exert beneficial medicinal effects to treat diabetes, obesity, and fatty liver disease (NAFLD/nonalcoholic steatohepatitis [NASH]). Here we address gaps in knowledge about the pharmacology and toxicology of this substance administered at high concentrations to explore its medicinal potential.
View Article and Find Full Text PDFMetabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine) can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo.
View Article and Find Full Text PDFWe have developed assays for the binding of nucleotide and protein substrates to p38alpha protein kinase based on time-resolved Forster resonance energy transfer. p38alpha was biotinylated by addition of a sequence that targets biotin to a single lysine when coexpressed with biotin ligase in Escherichia coli, allowing formation of a complex between a streptavidin "LANCE" europium chelate conjugate and p38alpha. When this reagent was combined with M39AF, a p38 inhibitor containing a fluorescent moiety whose excitation wavelengths match the emission wavelengths of the europium chelate, a change in ratio of light emitted at 665 nm/615 nm is detected.
View Article and Find Full Text PDFThe m7GpppN cap at the 5' end of eukaryotic mRNAs is important for transcript stability and translation. Three enzymatic activities that generate the mRNA cap include an RNA 5'-triphosphatase, an RNA guanylyltransferase, and an RNA (guanine-7-) -methyltransferase. The physical organization of the genes encoding these enzymes differs between mammalian cells and yeast, fungi, or viruses.
View Article and Find Full Text PDF